Skip to main content

Metaheuristics for Common due Date Total Earliness and Tardiness Single Machine Scheduling Problem

  • Chapter
Computational Intelligence in Flow Shop and Job Shop Scheduling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 230))

  • 1516 Accesses

Summary

In this chapter, metaheuristic algorithms, namely, a binary particle swarm optimization, a discrete particle swarm optimization, and a discrete differential evolution algorithm, are presented to solve the common due date total earliness and tardiness single machine scheduling problem. Novel discrete versions of both particle swarm optimization and differential evolution algorithms are developed to be applied to all types of combinatorial optimization problems in the literature. The metaheuristic algorithms presented in this chapter employ a binary solution representation, which is very common in the literature in terms of determining the early and tardy job sets so as to implicitly tackle the problem. In addition, a constructive heuristic algorithm, here we call it MHRM, is developed to solve the problem. Together with the MHRM heuristic, a new binary swap mutation operator, here we call it BSWAP, is employed in the metaheuristic algorithms. Furthermore, metaheuristic algorithms are hybridized with a simple local search based on the BSWAP mutation operator to further improve the solution quality. The proposed metaheuristic algorithms are tested on 280 benchmark instances ranging from 10 to 1000 jobs from the OR Library. The computational results show that the metaheuristic algorithms with a simple local search generated either better or competitive results than those of all the existing approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, T.C.E., Kahlbacher, H.G.: A proof for the longest/job/first policy in one/machine scheduling. Naval Research Logistics 38, 715–720 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker, K.R., Scudder, G.D.: On the assignment of optimal due dates. Journal of the Operational Research Society 40, 93–95 (1989)

    Article  MATH  Google Scholar 

  3. Biskup, D., Feldmann, M.: Benchmarks for scheduling on a single machine against restrictive and unrestrictive common due dates. Computers & Operations Research 28, 787–801 (2001)

    Article  MATH  Google Scholar 

  4. Hoogeveen, J.A., van de Velde, S.L.: Scheduling around a small common due date. European Journal of Operational Research 55, 237–242 (1991)

    Article  MATH  Google Scholar 

  5. Hall, N.G., Kubiak, W., Sethi, S.P.: Earliness-tardiness scheduling problems II: weighted deviation of completion times about a restrictive common due date. Operations Research 39(5), 847–856 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. James, R.J.W., Buchanan, J.T.: Using tabu search to solve the common due date early/tardy machine scheduling problem. Computers & Operations Research 24, 199–208 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wan, G., Yen, B.P.C.: Tabu search for single machine with distinct due windows and weighted earliness/tardiness penalties. European Journal of Operational Research 142, 271–281 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hino, C.M., Ronconi, D.P., Mendes, A.B.: Minimizing earliness and tardiness penalties in a single-machine problem with a common due date. European Journal of Operational Research 160, 190–201 (2005)

    Article  MATH  Google Scholar 

  9. Lee, C.Y., Choi, J.Y.: A genetic algorithm for jobs sequencing with distinct due dates and general early-tardy penalty weights. Computers & Operations Research 22, 857–869 (1995)

    Article  MATH  Google Scholar 

  10. Lee, C.Y., Kim, S.J.: Parallel genetic algorithms for the earliness/tardiness job scheduling problem with general penalty weights. Computers & Industrial Engineering 28, 231–243 (1995)

    Article  Google Scholar 

  11. Nearchou, A.C.: A differential evolution approach for the common due date early/tardy job scheduling problem. Computers & Operations Research 35, 1329–1343 (2008)

    Article  MATH  Google Scholar 

  12. Feldmann, M., Biskup, D.: Single-machine scheduling for minimizing earliness and tardiness penalties by metaheuristic approaches. Computers & Industrial Engineering 44, 307–323 (2003)

    Article  Google Scholar 

  13. M’Hallah, R.: Minimizing total earliness and tardiness on a single machine using a hybrid heuristic. Computers & Operations Research 34, 3126–3142 (2007)

    Article  MATH  Google Scholar 

  14. Hendel, Y., Sourd, F.: Efficient neighborhood search for the one-machine earliness-tardiness scheduling problem. European Journal of Operational Research 173, 108–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lin, S.-W., Chou, S.-Y., Ying, K.-C.: A sequential exchange approach for minimizing earliness-tardiness penalties of single-machine scheduling with a common due date. European Journal of Operational Research 177, 1294–1301 (2007)

    Article  MATH  Google Scholar 

  16. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. San Mateo, Morgan Kaufmann (2001)

    Google Scholar 

  18. Clerc, M.: Particle Swarm Optimization. ISTE Ltd., France (2006)

    MATH  Google Scholar 

  19. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics 1997, Piscataway, NJ, pp. 4104–4109 (1997)

    Google Scholar 

  20. Storn, R., Price, K.: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. ICSI, Technical Report TR-95-012 (1995)

    Google Scholar 

  21. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous space. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Corne, D., Dorigo, M., Glover, F.: Part Two: Differential Evolution. In: New Ideas in Optimization, pp. 77–158. McGraw-Hill, New York (1999)

    Google Scholar 

  23. Lampinen, J.: A bibliography of differential evolution algorithm. Lappeenranta University of Technology, Department of Information Technology, Laboratory of Information Processing, Technical Report (2001)

    Google Scholar 

  24. Babu, B.V., Onwubolu, G.C. (eds.): New Optimization Techniques in Engineering. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  25. Price, K., Storn, R., Lampinen, J.: Differential Evolution – A Practical Approach to Global Optimization. Springer, Heidelberg (2006)

    Google Scholar 

  26. Chakraborty, U.K.: Advances in Differential Evolution. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  27. Tasgetiren, M.F., Liang, Y.-C.: A binary particle swarm optimization algorithm for lot sizing problem. Journal of Economic and Social Research 5(2), 1–20 (2003)

    Google Scholar 

  28. Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G.: Particle swarm optimization and differential evolution for single machine total weighted tardiness problem. International Journal of Production Research 44(22), 4737–4754 (2006)

    Article  MATH  Google Scholar 

  29. Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., Yenisey, M.M.: Particle swarm optimization and differential evolution algorithms for job shop scheduling problem. International Journal of Operations Research 3(2), 120–135 (2006)

    MathSciNet  Google Scholar 

  30. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: A discrete particle swarm optimization algorithm for single machine total earliness and tardiness problem with a common due date. In: Proceedings of the World Congress on Evolutionary Computation, CEC 2006, Vancouver, Canada, pp. 3281–3288 (2006)

    Google Scholar 

  31. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: Minimizing total earliness and tardiness penalties with a common due date on a single machine using a discrete particle swarm optimization algorithm. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 460–467. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G.: Particle swarm optimization algorithm for makespan and total flowtime minimization in permutation flowshop sequencing problem. European Journal of Operational Research 177(3), 1930–1947 (2007)

    Article  MATH  Google Scholar 

  33. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C.: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem with makespan and total flowtime criteria. Computers & Operations Research 35, 2807–2839 (2008)

    Article  MATH  Google Scholar 

  34. Al-Anzi, F.S., Allahverdi, A.: A self adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times. European Journal of Operational Research 182, 80–94 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Liao, C.-L., Tseng, C.-T., Luarn, P.: A discrete version of particle swarm optimization for flowshop scheduling problems. Computers & Operations Research 34, 3099–3111 (2007)

    Article  MATH  Google Scholar 

  36. Tasgetiren, M.F., Pan, Q.-K., Liang, Y.-C., Suganthan, P.N.: A discrete differential evolution algorithm for the total earliness and tardiness penalties with a common due date on a single machine. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling (CISched 2007), Hawaii, USA, pp. 271–278 (2007)

    Google Scholar 

  37. Tasgetiren, M.F., Pan, Q.-K., Liang, Y.-C., Suganthan, P.N.: A discrete differential evolution algorithm for the no-wait flowshop scheduling problem with total flowtime criterion. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling (CISched 2007), Hawaii, USA, pp. 251–258 (2007)

    Google Scholar 

  38. Montgomery, D.C.: Design and Analysis of Experiments., 5th edn. John Wiley and Sons, Chichester (2000)

    Google Scholar 

  39. Devore, J.L.: Probability and Statistics for Engineering and the Sciences, 5th edn., Duxbury, Thomson Learning (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tasgetiren, M.F., Pan, QK., Suganthan, P.N., Liang, YC., Chua, T.J. (2009). Metaheuristics for Common due Date Total Earliness and Tardiness Single Machine Scheduling Problem. In: Chakraborty, U.K. (eds) Computational Intelligence in Flow Shop and Job Shop Scheduling. Studies in Computational Intelligence, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02836-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02836-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02835-9

  • Online ISBN: 978-3-642-02836-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics