Skip to main content

Discrete-Continuous Optimization for Optical Flow Estimation

  • Conference paper
Statistical and Geometrical Approaches to Visual Motion Analysis

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5604))

Abstract

The accurate estimation of optical flow is a challenging task, which is often posed as an energy minimization problem. Most top-performing methods approach this using continuous optimization algorithms. In many cases, the employed models are assumed to be convex to ensure tractability of the optimization problem. This is in contrast to the related problem of narrow-baseline stereo matching, where the top-performing methods employ powerful discrete optimization algorithms such as graph cuts and message-passing to optimize highly non-convex energies.

In this chapter, we demonstrate how similar non-convex energies can be formulated and optimized in the context of optical flow estimation using a combination of discrete and continuous techniques. Starting with a set of candidate solutions that are produced by either fast continuous flow estimation algorithms or sparse feature matching, the proposed method iteratively fuses these candidate solutions by the computation of minimum cuts on graphs. The obtained continuous-valued result is then further improved using local gradient descent. Experimentally, we demonstrate that the proposed energy is an accurate model and that the proposed discrete-continuous optimization scheme not only finds lower energy solutions than traditional discrete or continuous optimization techniques, but also leads to very accurate flow estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1981)

    Article  Google Scholar 

  2. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI, April 1981, pp. 674–679 (1981)

    Google Scholar 

  3. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67(2), 141–158 (2006)

    Article  Google Scholar 

  4. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. CVIU 63(1), 75–104 (1996)

    Google Scholar 

  5. Roth, S., Black, M.J.: On the spatial statistics of optical flow. IJCV 74(1), 33–50 (2007)

    Article  Google Scholar 

  6. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV 2007 (2007), http://vision.middlebury.edu/flow/

  7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. TPAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  8. Sun, J., Zhen, N.N., Shum, H.Y.: Stereo matching using belief propagation. PAMI 25(7), 787–800 (2003)

    Article  Google Scholar 

  9. Meltzer, T., Yanover, C., Weiss, Y.: Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation. In: ICCV 2005, vol. 1, pp. 428–435 (2005)

    Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. In: CVPR 2004, vol. 1, pp. 261–268 (2004)

    Google Scholar 

  11. Glocker, B., Komodakis, N., Paragios, N., Tziritas, G., Navab, N.: Inter and intra-modal deformable registration: Continuous deformations meet efficient optimal linear programming. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 408–420. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Lempitsky, V., Rother, C., Blake, A.: LogCut - Efficient graph cut optimization for Markov random fields. In: ICCV 2007 (2007)

    Google Scholar 

  13. Shekhovtsov, A., Kovtun, I., Hlavac, V.: Efficient MRF deformation model for non-rigid image matching. In: CVPR 2007 (2007)

    Google Scholar 

  14. Lempitsky, V., Roth, S., Rother, C.: FusionFlow: Discrete-continuous optimization for optical flow estimation. In: CVPR 2008 (2008)

    Google Scholar 

  15. Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., Navab, N.: Optical flow estimation with uncertainties through dynamic MRFs. In: CVPR 2008 (2008)

    Google Scholar 

  16. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. IJCV 61(3), 211–231 (2005)

    Article  Google Scholar 

  17. Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of unconstrained quadratic binary optimization. Technical Report RUTCOR RRR (2006)

    Google Scholar 

  18. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathematics 123(1-3), 155–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmogorov, V., Rother, C.: Minimizing non-submodular functions with graph cuts — A review. TPAMI 29(7), 1274–1279 (2006)

    Article  Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Liu, C., Yuen, J., Torralba, A.B., Sivic, J., Freeman, W.T.: SIFT flow: Dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Brox, T., Bruhn, A., Weickert, J.: Variational motion segmentation with level sets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 471–483. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Mémin, É., Pérez, P.: Hierarchical estimation and segmentation of dense motion fields. IJCV 46(2), 129–155 (2002)

    Article  MATH  Google Scholar 

  24. Heitz, F., Bouthemy, P.: Multimodal estimation of discontinuous optical flow using Markov random fields. TPAMI 15(12), 1217–1232 (1993)

    Article  Google Scholar 

  25. Konrad, J., Dubois, E.: Multigrid Bayesian estimation of image motion fields using stochastic relaxation. In: ICCV 1988, pp. 354–362 (1988)

    Google Scholar 

  26. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. TPAMI (in revision)

    Google Scholar 

  27. Woodford, O.J., Torr, P.H.S., Reid, I.D., Fitzgibbon, A.W.: Global stereo reconstruction under second order smoothness priors. In: CVPR 2008 (2008)

    Google Scholar 

  28. Trobin, W., Pock, T., Cremers, D., Bischof, H.: Continuous energy minimization via repeated binary fusion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 677–690. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Birchfield, S., Natarjan, B., Tomasi, C.: Correspondence as energy-based segmentation. Image Vision Comp. 25(8), 1329–1340 (2007)

    Article  Google Scholar 

  30. Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning optical flow. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 83–97. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Li, Y., Huttenlocher, D.P.: Learning for optical flow using stochastic optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 379–391. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact MAP estimation for binary images. J. Roy. Stat. Soc. B 51(2), 271–279 (1989)

    Google Scholar 

  33. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. TPAMI 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  34. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? TPAMI 24(2), 147–159 (2004)

    Google Scholar 

  35. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: CVPR 2007 (2007)

    Google Scholar 

  36. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. TPAMI 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  37. Rasmussen, C.E.: minimize.m (September 2006), http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roth, S., Lempitsky, V., Rother, C. (2009). Discrete-Continuous Optimization for Optical Flow Estimation. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics