Skip to main content

On the Computational Properties of the Multi-Objective Neural Estimation of Distribution Algorithm

  • Chapter
Nature Inspired Cooperative Strategies for Optimization (NICSO 2008)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 236))

Abstract

This paper explores the behavior of the multi–objective neural EDA (MONEDA) in terms of its computational requirements it demands and assesses how it scales when dealing with multi–objective optimization problems with relatively large amounts of objectives. In order to properly comprehend these matters other MOEDAs and MOEAs are included in the analysis. The experiments performed tested the ability of each approach to scalably solve many–objective optimization problems. The fundamental result obtained is that MONEDA is not only yields similar or better solutions when compared with other approaches but also does it with at a lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C.W.: Advances in Evolutionary Algorithms. Theory, Design and Practice. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Bosman, P.A., Thierens, D.: The Naïve MIDEA: A baseline multi–objective EA. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 428–442. Springer, Heidelberg (2005)

    Google Scholar 

  3. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Genetic and Evolutionary Computation. Springer, New York (2007), http://www.springer.com/west/home/computer/foundations?SGWI=4-156-22-173660344-0

    MATH  Google Scholar 

  4. Costa, M., Minisci, E., Pasero, E.: An hybrid neural/genetic approach to continuous multi–objective optimization problems. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) WIRN 2003. LNCS, vol. 2859, pp. 61–69. Springer, Heidelberg (2003)

    Google Scholar 

  5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, Advanced Information and Knowledge Processing, pp. 105–145. Springer, Heidelberg (2004)

    Google Scholar 

  8. Ehrgott, M.: Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 491. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  10. Khare, V., Yao, X., Deb, K.: Performance Scaling of Multi-objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)

    Google Scholar 

  11. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

  12. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. In: A new tool for Evolutionary Computation. Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  13. Levon, J.: OProfile manual. Victoria University of Manchester (2004), http://oprofile.sourceforge.net/

  14. Martí, L., García, J., Berlanga, A., Molina, J.M.: A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms. In: Thierens, D., Deb, K., Pelikan, M., Beyer, H.G., Doerr, B., Poli, R., Bittari, M. (eds.) Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007, p. 911. ACM Press, New York (2007), http://portal.acm.org/citation.cfm?doid=1276958.1277141

    Chapter  Google Scholar 

  15. Martí, L., García, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: Scalable multiobjective optimization with a neural estimation of distribution algorithm. In: Thierens, D., Deb, K., Pelikan, M., Beyer, H.G., Doerr, B., Poli, R., Bittari, M. (eds.) GECCO 2008: 10th Annual Conference on Genetic and Evolutionary Computation, pp. 689–696. ACM Press, New York (2008); eMO Track “Best Paper” Nominee

    Chapter  Google Scholar 

  16. Martí, L., García, J., Berlanga, A., Molina, J.M.: Model–building algorithms for multiobjective EDAs: Directions for improvement. In: Michalewicz, Z. (ed.) Computational Intelligence: Research Frontiers, pp. 2848–2855. IEEE Press, Piscataway (2008) doi:10.1109/CEC.2008.4631179

    Google Scholar 

  17. Martí, L., García, J., Berlanga, A., Molina, J.M.: Scalable continuous multiobjective optimization with a neural network–based estimation of distribution algorithm. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 535–544. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Martinetz, T.M., Berkovich, S.G., Shulten, K.J.: Neural–gas network for vector quantization and its application to time–series prediction. IEEE Transactions on Neural Networks 4, 558–560 (1993)

    Article  Google Scholar 

  19. Pareto, V.: Cours D’Economie Politique. F. Rouge, Lausanne (1896)

    Google Scholar 

  20. Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution algorithms. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. Studies in Computational Intelligence, pp. 223–248. Springer, Heidelberg (2006)

    Google Scholar 

  21. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784 (2007)

    Article  Google Scholar 

  22. Qin, A.K., Suganthan, P.N.: Robust growing neural gas algorithm with application in cluster analysis. Neural Networks 17(8–9), 1135–1148 (2004)

    Article  MATH  Google Scholar 

  23. Timm, H., Borgelt, C., Doring, C., Kruse, R.: An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets and Systems 147(1), 3–16 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, Q., Zhou, A., Jin, Y.: RM–MEDA: A regularity model–based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation 12(1), 41–63 (2008)

    Article  Google Scholar 

  25. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martí, L., García, J., Berlanga, A., Molina, J.M. (2009). On the Computational Properties of the Multi-Objective Neural Estimation of Distribution Algorithm. In: Krasnogor, N., Melián-Batista, M.B., Pérez, J.A.M., Moreno-Vega, J.M., Pelta, D.A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2008). Studies in Computational Intelligence, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03211-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03211-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03210-3

  • Online ISBN: 978-3-642-03211-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics