Skip to main content

Integral Sliding Mode Based Composite Nonlinear Feedback Control

  • Chapter
Sliding Mode Control Using Novel Sliding Surfaces

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 392))

Introduction

In this chapter we discuss the problem of improving performance yet preserving the invariance towards the matched disturbances from a different perspective. In the previous chapters, we proposed various schemes in which the nonlinear surfaces are designed for different types of systems for the improvement of performance. In this chapter we propose a nonlinear surface which considers actuator saturation and the elimination of the reaching phase with improvement in the performance. For any practical system, actuator output can not take any amplitude. Actuator capacity is always bounded, therefore it is necessary to consider the effect of saturation actuator a priori. In conventional sliding mode, the motion of the trajectory is constrained to lie in an (n − − m) dimensional manifold with a discontinuous control action. Here m is the number of inputs and n is the order of the system. The motion of the trajectory from the initial condition towards sliding surface until it hits the sliding surface is called the reaching phase. During the reaching phase, the system is not robust and even matched disturbances can affect the system performance. To solve this problem, in [100], an integral sliding mode (ISM) concept is proposed. An integral term is incorporated in the sliding manifold, this guarantees that the system trajectories will start in the manifold right from the beginning thus, the reaching phase is eliminated; and the system becomes invariant towards matching perturbation right from the beginning. The main idea behind the ISM controller is to define the control law as a sum of a nominal control and a discontinuous control. Nominal control takes care of the nominal plant dynamics and the discontinuous control rejects the disturbances. The nominal control can be of any form which is able to follow the reference trajectory within a given accuracy. In this work we have taken Composite Nonlinear Feedback (CNF) controller, which is based on variable damping ratio, as a nominal controller along with the ISM controller to reject disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandyopadhyay, B., Deepak, F., Kim, KS. (2009). Integral Sliding Mode Based Composite Nonlinear Feedback Control. In: Sliding Mode Control Using Novel Sliding Surfaces. Lecture Notes in Control and Information Sciences, vol 392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03448-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03448-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03447-3

  • Online ISBN: 978-3-642-03448-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics