Skip to main content

Plant Gα Structure and Properties

  • Chapter
  • First Online:
Integrated G Proteins Signaling in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

G-protein-coupled receptors (GPCRs) are a large family of eukaryotic membrane-spanning proteins that convert signals from the outside of a cell to an appropriate response inside the cell. GPCRs typically associate with a heterotrimeric Gαβγ protein. Activated receptors propagate signals by causing the Gα subunit of the heterotrimer to release GDP and to bind GTP. GTP binding causes a conformational change in the Gα protein that triggers heterotrimer dissociation and downstream signaling. In this way, the guanine nucleotide occupancy of the Gα subunit determines the protein structure and activity. Although most of the G protein paradigm has been established by studying animal G proteins, recent research has revealed diverse roles for G protein signaling in plants. The first part of the chapter (Section “Introduction: Structure-Function Relationships in G Protein Signaling” in Chapter “Plant Gα Structure and Properties”) reviews G protein signaling principles, with an emphasis on the information that has been gleaned from atomic structures. The second part (Section “Comparison of Plant Gα Proteins to Mammalian Gα Proteins” in Chapter, “Plant Gα Structure and Properties”) compares plant Gα proteins to animal Gα proteins with an emphasis on how structure confers function for these proteins. Although plant and animal Gα proteins share less than 40% identity, the key residues that confer G protein function are nearly invariant across all G protein families. The third part (Section “Properties of Plant Gα Proteins” in Chapter “Plant Gα Structure and Properties”) describes the physical properties of plant Gα proteins, including kinetic properties, localization, receptor coupling, and effector activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18:579–591

    Article  CAS  PubMed  Google Scholar 

  • Adjobo-Hermans MJ, Goedhart J, Gadella TW Jr (2006) Plant G protein heterotrimers require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon activation. J Cell Sci 119:5087–5097

    Article  CAS  PubMed  Google Scholar 

  • Aharon GS, Gelli A, Snedden WA, Blumwald E (1998) Activation of a plant plasma membrane Ca2+ channel by TGalpha1, a heterotrimeric G protein alpha-subunit homologue. FEBS Lett 424:17–21

    Article  CAS  PubMed  Google Scholar 

  • Ballon D, Flanary P, Gladue D, Konopka J, Dohlman H, Thorner J (2006) DEP domains link a regulator-of-G-protein-signaling protein to its cognate G-protein-coupled receptor. Cell 126(6):1079–1093

    Article  CAS  PubMed  Google Scholar 

  • Berken A, Thomas C, Wittinghofer A (2005) A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436:1176–1180

    Article  CAS  PubMed  Google Scholar 

  • Berman DM, Kozasa T, Gilman AG (1996a) The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J Biol Chem 271:27209–27212

    Article  CAS  PubMed  Google Scholar 

  • Berman DM, Wilkie TM, Gilman AG (1996b) GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86:445–452

    Article  CAS  PubMed  Google Scholar 

  • Bunemann M, Frank M, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100:16077–16082

    Article  PubMed  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669–2673

    Article  CAS  PubMed  Google Scholar 

  • Cerione RA, Zheng Y (1996) The Dbl family of oncogenes. Curr Opin Cell Biol 8:216–222

    Article  CAS  PubMed  Google Scholar 

  • Chen JG, Jones AM (2004) AtRGS1 function in Arabidopsis thaliana. Methods Enzymol 389:338–350

    Article  CAS  PubMed  Google Scholar 

  • Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM, Jones AM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135:907–915

    Article  CAS  PubMed  Google Scholar 

  • Chen JG, Willard FS, Huang J, Liang J, Chasse SA, Jones AM, Siderovski DP (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731

    Article  CAS  PubMed  Google Scholar 

  • Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Sprang SR (1994) Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 265:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Conklin BR, Herzmark P, Ishida S, Voyno-Yasenetskaya TA, Sun Y, Farfel Z, Bourne HR (1996) Carboxyl-terminal mutations of Gq alpha and Gs alpha that alter the fidelity of receptor activation. Mol Pharmacol 50:885–890

    CAS  PubMed  Google Scholar 

  • Cook B, Bar-Yaacov M, Cohen Ben-Ami H, Goldstein RE, Paroush Z, Selinger Z, Minke B (2000) Phospholipase C and termination of G-protein-mediated signalling in vivo. Nat Cell Biol 2:296–301

    Article  CAS  PubMed  Google Scholar 

  • Cote TE, Frey EA, Sekura RD (1984) Altered activity of the inhibitory guanyl nucleotide-binding component (Ni) induced by pertussis toxin. Uncoupling of Ni from receptor with continued coupling of Ni to the catalytic unit. J Biol Chem 259:8693–8698

    CAS  PubMed  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004

    Article  CAS  PubMed  Google Scholar 

  • DiBello PR, Garrison TR, Apanovitch DM, Hoffman G, Shuey DJ, Mason K, Cockett MI, Dohlman HG (1998) Selective uncoupling of RGS action by a single point mutation in the G protein alpha-subunit. J Biol Chem 273:5780–5784

    Article  CAS  PubMed  Google Scholar 

  • Dohlman HG, Song J, Ma D, Courchesne WE, Thorner J (1996) Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol Cell Biol 16:5194–5209

    CAS  PubMed  Google Scholar 

  • Evanko DS, Thiyagarajan MM, Siderovski DP, Wedegaertner PB (2001) Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J Biol Chem 276:23945–23953

    Article  CAS  PubMed  Google Scholar 

  • Ferguson KM, Higashijima T, Smigel MD, Gilman AG (1986) The influence of bound GDP on the kinetics of guanine nucleotide binding to G proteins. J Biol Chem 261:7393–7399

    CAS  PubMed  Google Scholar 

  • Fishburn CS, Pollitt SK, Bourne HR (2000) Localization of a peripheral membrane protein: Gbetagamma targets Galpha(Z). Proc Natl Acad Sci USA 97:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Freissmuth M, Gilman AG (1989) Mutations of GS alpha designed to alter the reactivity of the protein with bacterial toxins. Substitutions at ARG187 result in loss of GTPase activity. J Biol Chem 264:21907–21914

    CAS  PubMed  Google Scholar 

  • Gadella TW Jr, van der Krogt GN, Bisseling T (1999) GFP-based FRET microscopy in living plant cells. Trends Plant Sci 4:287–291

    Article  PubMed  Google Scholar 

  • Garzon J, Rodriguez-Munoz M, Sanchez-Blazquez P (2005) Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology 48:853–868

    Article  CAS  PubMed  Google Scholar 

  • Gookin TE, Kim J, Assmann SM (2008) Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in vivo protein coupling. Genome Biol 9:R120

    Article  PubMed  Google Scholar 

  • Gu Y, Li S, Lord EM, Yang Z (2006) Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell 18:366–381

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zeng Q, Emami M, Ellis BE, Chen JG (2008) The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE 3:e2982

    Article  PubMed  Google Scholar 

  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280:2112–2114

    Article  CAS  PubMed  Google Scholar 

  • Hartweck LM, Llewellyn DJ, Dennis ES (1997) The Arabidopsis thaliana genome has multiple divergent forms of phosphoinositol-specific phospholipase C1. Gene 202:151–156

    Article  CAS  PubMed  Google Scholar 

  • Higashijima T, Ferguson KM, Sternweis PC, Ross EM, Smigel MD, Gilman AG (1987a) The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J Biol Chem 262:752–756

    CAS  PubMed  Google Scholar 

  • Higashijima T, Ferguson KM, Sternweis PC, Smigel MD, Gilman AG (1987b) Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem 262:762–766

    CAS  PubMed  Google Scholar 

  • Huang J, Taylor JP, Chen JG, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Iiri T, Herzmark P, Nakamoto JM, van Dop C, Bourne HR (1994) Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature 371:164–168

    Article  CAS  PubMed  Google Scholar 

  • Illingworth CJ, Parkes KE, Snell CR, Mullineaux PM, Reynolds CA (2008) Criteria for confirming sequence periodicity identified by Fourier transform analysis: application to GCR2, a candidate plant GPCR? Biophys Chem 133:28–35

    Article  CAS  PubMed  Google Scholar 

  • Ingi T, Krumins AM, Chidiac P, Brothers GM, Chung S, Snow BE, Barnes CA, Lanahan AA, Siderovski DP, Ross EM, Gilman AG, Worley PF (1998) Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci 18:7178–7188

    CAS  PubMed  Google Scholar 

  • Iwasaki Y, Kato T, Kaidoh T, Ishikawa A, Asahi T (1997) Characterization of the putative alpha subunit of a heterotrimeric G protein in rice. Plant Mol Biol 34:563–572

    Article  CAS  PubMed  Google Scholar 

  • Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG, Siderovski DP, Jones AM, Willard FS (2007a) GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104:17317–17322

    Article  CAS  PubMed  Google Scholar 

  • Johnston CA, Temple BR, Chen JG, Gao Y, Moriyama EN, Jones AM, Siderovski DP, Willard FS (2007b) Comment on "A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid". Science 318:914

    Article  CAS  PubMed  Google Scholar 

  • Josefsson LG, Rask L (1997) Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. Eur J Biochem 249:415–420

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Mizutani T, Tamaki H, Kumagai H, Kamiya T, Hirobe A, Fujisawa Y, Kato H, Iwasaki Y (2004) Characterization of heterotrimeric G protein complexes in rice plasma membrane. Plant J 38:320–331

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y (1980) Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem 255:2273–2276

    CAS  PubMed  Google Scholar 

  • Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature 369:621–628

    Article  CAS  PubMed  Google Scholar 

  • Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379:311–319

    Article  CAS  PubMed  Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696

    Article  CAS  PubMed  Google Scholar 

  • Lapik YR, Kaufman LS (2003) The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15:1578–1590

    Article  CAS  PubMed  Google Scholar 

  • Lein W, Saalbach G (2001) Cloning and direct G-protein regulation of phospholipase D from tobacco. Biochim Biophys Acta 1530:172–183

    CAS  PubMed  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  CAS  PubMed  Google Scholar 

  • Lomovatskaya LA, Romanenko AS, Filinova NV (2008) Plant adenylate cyclases. J Recept Signal Transduct Res 28:531–542

    Article  CAS  PubMed  Google Scholar 

  • Lutz S, Shankaranarayanan A, Coco C, Ridilla M, Nance MR, Vettel C, Baltus D, Evelyn CR, Neubig RR, Wieland T, Tesmer JJ (2007) Structure of Galphaq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 318:1923–1927

    Article  CAS  PubMed  Google Scholar 

  • Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  CAS  PubMed  Google Scholar 

  • Mello LV, Millner PA, Findlay JB (2002) Biochemical characteristics of guanine nucleotide binding protein alpha-subunit recombinant protein and three mutants: investigation of a domain motion involved in GDP-GTP exchange. J Protein Chem 21:29–34

    Article  CAS  PubMed  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    Article  CAS  PubMed  Google Scholar 

  • Mixon MB, Lee E, Coleman DE, Berghuis AM, Gilman AG, Sprang SR (1995) Tertiary and quaternary structural changes in Gi alpha 1 induced by GTP hydrolysis. Science 270:954–960

    Article  CAS  PubMed  Google Scholar 

  • Morales J, Fishburn CS, Wilson PT, Bourne HR (1998) Plasma membrane localization of G alpha z requires two signals. Mol Biol Cell 9:1–14

    CAS  PubMed  Google Scholar 

  • Moriyama EN, Strope PK, Opiyo SO, Chen Z, Jones AM (2006) Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biol 7:R96

    Article  PubMed  Google Scholar 

  • Mukhopadhyay S, Ross EM (1999) Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc Natl Acad Sci USA 96:9539–9544

    Article  CAS  PubMed  Google Scholar 

  • Mumby SM, Heukeroth RO, Gordon JI, Gilman AG (1990) G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci USA 87:728–732

    Article  CAS  PubMed  Google Scholar 

  • Muntz KH, Sternweis PC, Gilman AG, Mumby SM (1992) Influence of gamma subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes. Mol Biol Cell 3:49–61

    CAS  PubMed  Google Scholar 

  • Natochin M, Moussaif M, Artemyev NO (2001) Probing the mechanism of rhodopsin-catalyzed transducin activation. J Neurochem 77:202–210

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  CAS  PubMed  Google Scholar 

  • Noel JP, Hamm HE, Sigler PB (1993) The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature 366:654–663

    Article  CAS  PubMed  Google Scholar 

  • Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol 13:772–777

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719–731

    Article  CAS  PubMed  Google Scholar 

  • Plakidou-Dymock S, Dymock D, Hooley R (1998) A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Curr Biol 8:315–324

    Article  CAS  PubMed  Google Scholar 

  • Preininger A, Funk M, Meier S, Oldham W, Johnston C, Adhikary S, Kimple A, Siderovski D, Hamm H, Iverson T (2009) Helix dipole movement and conformational variability contribute to allosteric GDP release in Gi subunits. Biochemistry (In press)

    Google Scholar 

  • Rasenick MM, Watanabe M, Lazarevic MB, Hatta S, Hamm HE (1994) Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J Biol Chem 269:21519–21525

    CAS  PubMed  Google Scholar 

  • Roef L, Witters E, Gadeyne J, Marcussen J, Newton RP, Van Onckelen HA (1996) Analysis of 3', 5'-cAMP and adenylyl cyclase activity in higher plants using polyclonal chicken egg yolk antibodies. Anal Biochem 233:188–196

    Article  CAS  PubMed  Google Scholar 

  • Saitoh O, Murata Y, Odagiri M, Itoh M, Itoh H, Misaka T, Kubo Y (2002) Alternative splicing of RGS8 gene determines inhibitory function of receptor type-specific Gq signaling. Proc Natl Acad Sci USA 99:10138–10143

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Kim HY, Jeong JY, Lee SY, Cho MJ, Bahk JD (1995) Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36). Plant Mol Biol 27:1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Siderovski DP, Hessel A, Chung S, Mak TW, Tyers M (1996) A new family of regulators of G-protein-coupled receptors? Curr Biol 6:211–212

    Article  CAS  PubMed  Google Scholar 

  • Slep KC, Kercher MA, He W, Cowan CW, Wensel TG, Sigler PB (2001) Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature 409:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Slessareva JE, Routt SM, Temple B, Bankaitis VA, Dohlman HG (2006) Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome. Cell 126:191–203

    Article  CAS  PubMed  Google Scholar 

  • Sternweis PC (1986) The purified alpha subunits of Go and Gi from bovine brain require beta gamma for association with phospholipid vesicles. J Biol Chem 261:631–637

    CAS  PubMed  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1, 4, 5-trisphosphate. Nature 306:67–69

    Article  CAS  PubMed  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 99:13307–13312

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Kishimoto A, Iwasa Y, Kawahara Y, Mori T, Nishizuka Y, Tamura A, Fujii T (1979) A role of membranes in the activation of a new multifunctional protein kinase system. J Biochem 86:575–578

    CAS  PubMed  Google Scholar 

  • Takida S, Wedegaertner PB (2003) Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gbetagamma. J Biol Chem 278:17284–17290

    Article  CAS  PubMed  Google Scholar 

  • Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266

    Article  CAS  PubMed  Google Scholar 

  • Tesmer JJ, Berman DM, Gilman AG, Sprang SR (1997a) Structure of RGS4 bound to AlF4–activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 89:251–261

    Article  CAS  PubMed  Google Scholar 

  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997b) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278:1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Thomas CJ, Du X, Li P, Wang Y, Ross EM, Sprang SR (2004) Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein alpha-subunit. Proc Natl Acad Sci USA 101:7560–7565

    Article  CAS  PubMed  Google Scholar 

  • Thomas TC, Schmidt CJ, Neer EJ (1993) G-protein alpha o subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc Natl Acad Sci USA 90:10295–10298

    Article  CAS  PubMed  Google Scholar 

  • Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR, Ecker JR, Jones AM (2003) The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409

    Article  CAS  PubMed  Google Scholar 

  • Van Dop C, Tsubokawa M, Bourne HR, Ramachandran J (1984) Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem 259:696–698

    PubMed  Google Scholar 

  • Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Wall MA, Posner BA, Sprang SR (1998) Structural basis of activity and subunit recognition in G protein heterotrimers. Structure 6:1169–1183

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Assmann SM, Fedoroff NV (2008) Characterization of the Arabidopsis heterotrimeric G protein. J Biol Chem 283:13913–13922

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Wendler WM, Kremmer E, Forster R, Winnacker EL (1997) Identification of pirin, a novel highly conserved nuclear protein. J Biol Chem 272:8482–8489

    Article  CAS  PubMed  Google Scholar 

  • West RE Jr, Moss J, Vaughan M, Liu T, Liu TY (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J Biol Chem 260:14428–14430

    CAS  PubMed  Google Scholar 

  • Wu YL, Hooks SB, Harden TK, Dohlman HG (2004) Dominant-negative inhibition of pheromone receptor signaling by a single point mutation in the G protein alpha subunit. J Biol Chem 279:35287–35297

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Lee B, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Wang X, Running MP (2007) Dual lipid modification of Arabidopsis Ggamma-subunits is required for efficient plasma membrane targeting. Plant Physiol 143:1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dalpha1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice C. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, J.C. (2010). Plant Gα Structure and Properties. In: Yalovsky, S., Baluška, F., Jones, A. (eds) Integrated G Proteins Signaling in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03524-1_1

Download citation

Publish with us

Policies and ethics