Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 243))

  • 1663 Accesses

Abstract

The construction and the physical background of operation of floating gate, nanocrystal, silicon nitride-based, phase-change, ferroelectric and magnetoresistive memories are breafly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parat, K.K.: Flash Memory Technology - Recent Advances and Future Outlook. In: Bath, K.N., DasGupta, A. (eds.) Physics of Semiconductor Devices, pp. 433–438. Narosha Publishing House, New Delhi (2004)

    Google Scholar 

  2. Cappelletti, P.: Flash Memory Reliability. Microelectron. Reliab. 38, 185–188 (1998)

    Article  Google Scholar 

  3. Horváth, Z.J., Basa, P.: Nanocrystal Memory Structures. In: Torchinskaya, T.V., Vorobiev, Y. V. (ed.) Nanocrystals and Quantum Dots of Group IV Semiconductors, ch. 5. American Scientific Publishers (in press)

    Google Scholar 

  4. Bez, R., Camerlenghi, E., Pirovano, A.: Materials and Processes for Non-Volatile Memories, Mater. Sci. Forum (2009) doi:10.4028/www.scientific.net/MSF.608.111

    Google Scholar 

  5. Frohman-Bentchkowsky, D., Lenzlinger, M.: Charge Transport and Storage in Metal-Nitride-Oxide-Silicon (MNOS) Structures. J. Appl. Phys. 40, 3307–3319 (1969)

    Article  Google Scholar 

  6. Lusky, E., Shacham-Diamand, Y., Mitenberg, G., Shappir, A., Bloom, I., Eitan, B.: Investigation of Channel Hot Electron Injection by Localized Charge-Trapping Nonvolatile Memory Devices. IEEE Trans. Electron. Dev (2004) doi:10.1109/TED.2003.823245

    Google Scholar 

  7. Horváth, Zs. J., Basa, P.: Nanocrystal Non-Volatile Memory Devices. Mater. Sci. Forum (2009) doi:10.4028/3-908454-02-6

    Google Scholar 

  8. Rao, R.A., Steimle, R.F., Sadd, M., Swift, C.T., Hradsky, B., Straub, S., Merchant, T., Stoker, M., Anderson, S.G.H., Rossow, M., Yater, J., Acred, B., Harber, K., Prinz, E.J., White Jr., B.E., Muralidhar, R.: Silicon Nanocrystal-based Memory Devices for NVM and DRAM Applications. Solid-State Electron (2004) doi:10.1016/j.sse, 03.021

    Google Scholar 

  9. Compagnoni, C.M., Ielmini, D., Spinelli, A.S., Lacaita, A.L.: Extraction of the Floating-Gate Capacitive Couplings for Drain Turn-On Estimation in Discrete-Trap Memories. Microel. Eng (2006) doi:10.1016/j.mee.2005.09.005

    Google Scholar 

  10. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E.F., Chan, K.: A Silicon Nanocrystals-based Memory. Appl. Phys. Lett. 68, 1377–1379 (1996)

    Article  Google Scholar 

  11. Horváth, Z.J.: Semiconductor Nanocrystals in Dielectrics: Optoelectronic and Memory Applications of Related Silicon-based MIS Devices. Current Appl. Phys. (2006) doi:10.1016/j.cap.2005.07.028

    Google Scholar 

  12. Basa, P., Horváth, Z.J., Jászi, T., Pap, A.E., Dobos, L., Pécz, B., Tóth, L., Szöllősi, P.: Electrical and Memory Properties of Silicon Nitride Structures with Embedded Si Nanocrystals. Physica E (2007) doi:10.1016/j.physe, 12.016

    Google Scholar 

  13. Eitan, B., Pavan, P., Bloom, I., Aloni, E., Frommer, A., Finzi, D.: NROM: A Novel Localized Trapping, 2-bit Nonvolatile Memory Cell. IEEE Electron Dev. Lett. 21, 543–548 (2000)

    Article  Google Scholar 

  14. Eitan, B., Cohen, G., Shappir, A., et al.: 4-bit per Cell NROM Reliability. In: IEEE International Electron Devices Meeting, Technical Digest, pp. 547–550 (2005)

    Google Scholar 

  15. Nagel, N., Muller, T., Isler, M., et al.: A New Twin Flash (TM) Cell for 2 and 4 bit Operation at 63 nm Feature Size. In: 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Proceedings of Technical Papers, pp. 90–91 (2007)

    Google Scholar 

  16. Normand, P., Dimitrakis, P., Kapetanakis, E., Skarlatos, D., Beltsios, K., Tsoukalas, D., Bonafos, C., Coffin, H., Benassayag, G., Claverie, A., Soncini, V., Agarwal, A., Sohl, C., Ameen, M.: Processing Issues in Silicon Nanocrystal Manufacturing by Ultra-Low-Energy Ion-Beam-Synthesis for Non-Volatile Memory Applications. Microelectron. Eng. (2004) doi: 10.1016/j.mee.2004.03.043

    Google Scholar 

  17. Basa, P., Molnár, G., Dobos, L., Pécz, B., Tóth, L., Tóth, A.L., Koós, A.A., Dózsa, L., Nemcsics, Á., Horváth, Z.J.: Formation of Ge Nanocrystals in SiO2 by Electron Beam Evaporation. J. Nanosci. Nanotechnol. (2008) doi:10.1166/jnn.2008.A122

    Google Scholar 

  18. Beyer, V., von Borany, J.: Elemental Redistribution and Ge Loss during Ion-Beam Synthesis of Ge Nanocrystals in SiO2 films. Phys. Rev. B (2008) doi: 10.1103/PhysRevB.77.014107

    Google Scholar 

  19. Dai, M., Chen, K., Huang, X., Wu, L., Zhang, L., Qiao, F., Li, W., Chen, K.: Formation and Charging Effect of Si Nanocrystals in a-SiNx/a-Si/a-SiNx Structures. J. Appl. Phys. (2004) doi: 10.1063/1.1633649

    Google Scholar 

  20. Ammendola, G., Ancarani, V., Triolo, V., Bileci, M., Corso, D., Crupi, I., Perniola, L., Gerardi, C., Lombardo, S., DeSalvo, B.: Nanocrystal Memories for FLASH Device Applications. Solid-State Electron (2004) doi:10.1016/j.sse2004.03.012

    Google Scholar 

  21. Choi, S., Yang, H., Chang, M., Baek, S., Hwang, H., Jeon, S., Kim, J., Kim, C.: Memory Characteristics of Silicon Nitride with Silicon Nanocrystals as a Charge Trapping Layer of Nonvolatile Memory Devices. Appl. Phys. Lett. (2005) doi: 10.1063/1.1951060

    Google Scholar 

  22. Huang, S., Oda, S.: Charge Storage in Nitrided Nanocrystalline Silicon Dots. Appl. Phys. Lett. (2005) doi: 10.1063/1.2115069

    Google Scholar 

  23. Tu, C.-H., Chang, T.-C., Liu, P.-T., Weng, C.-F., Liu, H.-C., Chang, L.-T., Lee, S.-K., Chen, W.-R., Sze, S.M., Chang, C.-Y.: Formation of Germanium Nanocrystals Embedded in Silicon-Oxygen-Nitride Layer. J. Electrochem. Soc. (2007) doi: 10.1149/1.2717494

    Google Scholar 

  24. Chen, W.-R., Chang, T.-C., Hsieh, Y.-T., Sze, S.M., Chang, C.-Y.: Appl. Phys. Lett. 91, 102106 (2007) doi: 10.1063/1.2779931

    Google Scholar 

  25. Horváth, Z. J., Basa, P., Jászi, T., Pap, A. E., Dobos, L., Pécz, B., Tóth, L., Szöllősi, P., Nagy, K.: Electrical and Memory Properties of Si3N4 MIS Structures with Embedded Si Nanocrystals. J. Nanosci. Nanotechnol. (2008) doi:10.1166/jnn.2008.A120

    Google Scholar 

  26. Hosaka, S., Miyauchi, K., Tamura, T., Sone, H., Koyanagi, H.: Proposal for a Memory Transistor Using Phase-Change and Nanosize Effects, Microelectron. Eng. (2004) doi: 10.1016/j.mee, 03.044

    Google Scholar 

  27. Wuttig, M., Yamada, N.: Phase-Change Materials for Rewriteable Data Storage. Nature Mater. (2007) doi: 10.1038/nmat2009

    Google Scholar 

  28. Kim, K., Jeong, G.: The Prospects of Non-Volatile Phase-Change RAM, Microsyst. Technol. (2007) doi: 10.1007/s00542-006-0150-y

    Google Scholar 

  29. Ishiwara, H.: Current Status of Ferroelectric-Gate Si Transistors and Challenge to Ferroelectric-Gate CNT Transistors, Current Appl. Phys. (2008) doi: 10.1016/j.cap.2008.02.013

    Google Scholar 

  30. Braganca, P.M., Katine, J.A., Emley, N.C., Mauri, D., Childress, J.R., Rice, P.M., Delenia, E., Ralph, D.C., Buhrman, R.A.: A Three-Terminal Approach to Developing Spin-Torque Written Magnetic Random Access Memory Cells. IEEE Trans. Nanotechnol. (2009) doi: 10.1109/TNANO.2008.2005187

    Google Scholar 

  31. Fukumoto, Y., Nebashi, R., Mukai, T., Tsuji, K., Suzuki, T.: Toggle Magnetic Random Access Memory Cells Scalable to a Capacity of Over 100 Megabits. J. appl. Phys. (2008) doi: 10.1063/1.2826744

    Google Scholar 

  32. You, L., Kato, T., Tsunashima, S., Iwata, S.: Thermomagnetic Writing on Deep Submicron-Patterned TbFe Films by Nanosecond Current Pulse. J. Magnetism Magnetic Mater. (2009) doi: 10.1016/j.jmmm.2008.10.026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horváth, Z.J., Basa, P. (2009). New Trends in Non-volatile Semiconductor Memories. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Towards Intelligent Engineering and Information Technology. Studies in Computational Intelligence, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03737-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03737-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03736-8

  • Online ISBN: 978-3-642-03737-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics