Skip to main content

Nonadiabatic Near-Field Optical Polishing and Energy Transfers in Spherical Quantum Dots

  • Chapter
  • First Online:
Progress in Nano-Electro-Optics VII

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 155))

Abstract

In the first half of this chapter, a novel fabrication method called nanophotonic polishing is reviewed. This method is a probeless and maskless optical processing technique that employs a nonadiabatic photochemical reaction . Nanophotonics has already brought about innovation in fabrication methods, such as with photochemical vapor deposition [1] and photolithography [2]. Conventional photochemical vapor deposition is a way to deposit materials on a substrate using a photochemical reaction with ultraviolet light that predissociates metal-organic molecules by irradiating gaseous molecules or molecules adsorbed on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu: J. Chem. Phys. 122, 024715 (2005)

    Article  CAS  Google Scholar 

  2. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, A. Neogi, Unique properties of optical near field and their applications to nanophotonics, in: Progress in Nano-Electro-Optics V, ed. by M. Ohtsu (Springer-Verlag, Berlin, 2006)

    Google Scholar 

  3. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quant. Electron. 14, 1404 (2008)

    Article  CAS  Google Scholar 

  4. K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu, Phys. Rev. A, 63, 013806 (2001)

    Article  Google Scholar 

  5. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002)

    Article  CAS  Google Scholar 

  6. B. W. van der Meer, G. Coker III, S. Y. S. Chen, Resonant Energy Transfer: Theory and Data (VCH, New York, 1994)

    Google Scholar 

  7. K. Kobayashi, S. Sangu, T. Kawazoe, M. Ohtsu, J. Lumin. 112, 117 (2005)

    Google Scholar 

  8. D. P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic, London, 1984)

    Google Scholar 

  9. E. Hanamura, Phys. Rev. B, 37, 1273 (1988)

    Article  Google Scholar 

  10. S. Sangu, K. Kobayashi, A. Shojiguchi, M. Ohtsu, Phys. Rev. B, 69, 115334 (2004)

    Article  CAS  Google Scholar 

  11. B. Wua, A. Kumar, J. Vac. Sci. Technol. B 25, 1743 (2007)

    Article  CAS  Google Scholar 

  12. L. M. Cook, J. Non-Cryst. Solids 120, 152 (1990)

    Article  CAS  Google Scholar 

  13. K. Kobayashi, T. Kawazoe, M. Ohtsu, IEEE Trans. Nanotechnol. 4, 517 (2005)

    Article  Google Scholar 

  14. T. Kawazoe, Y. Yamamoto, M. Ohtsu, Appl. Phys. Lett. 79, 1184 (2001)

    Article  CAS  Google Scholar 

  15. R. Kullmer, D. Bäuerle, Appl. Phys. A 43, 227 (1987)

    Article  Google Scholar 

  16. T. Izawa, N. Inagaki, Proc. IEEE 68, 1184 (1980)

    Article  CAS  Google Scholar 

  17. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, A. Forchel, Science 291, 451 (2001)

    Article  CAS  Google Scholar 

  18. E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, D. Gammon, Science 311, 636 (2006)

    Article  CAS  Google Scholar 

  19. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)

    Article  CAS  Google Scholar 

  20. T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86, 103102 (2005)

    Article  CAS  Google Scholar 

  21. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B 84, 243 (2006)

    Article  CAS  Google Scholar 

  22. N. Sakakura, Y. Masumoto, Phys. Rev. B 56, 4051 (1997)

    Article  CAS  Google Scholar 

  23. K. Kobayashi, S. Sangu, H. Itoh, M. Ohtsu, Phys. Rev. A 63, 013806 (2000)

    Article  Google Scholar 

  24. T. Suzuki, T. Mitsuyu, K. Nishi, H. Ohyama, T. Tomimasu, Appl. Phys. Lett. 69, 4136 (1996)

    Article  CAS  Google Scholar 

  25. C. Trallero-Giner, A. Debernardi, M. Cardona, M. Menendez-Proupin, A. I. Ekimov, Phys. Rev. B 57, 4664 (1998)

    Article  CAS  Google Scholar 

  26. T. Itoh, M. Furumiya, T. Ikehara, C. Gourdon, Solid State Comm. 73, 271 (1980)

    Article  Google Scholar 

  27. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 90, 223110 (2007)

    Article  CAS  Google Scholar 

  28. S. A. Crooker, T. Barrick, J. A. Hollingsworth, V. I. Klimov, Appl. Phys. Lett. 82, 2793 (2003)

    Article  CAS  Google Scholar 

  29. M. G. Bawendi, P. J. Carroll, L. W. William, L. E. Brus, J. Chem. Phys. 96, 946 (1992)

    Article  CAS  Google Scholar 

  30. P. Guyot-Sionnest, M. Shim, C. Matranga, M. Hines, Phys. Rev. B 60, R2181 (1999)

    Article  CAS  Google Scholar 

  31. A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, G. K. L. Wong, Appl. Phys. Lett. 77, 2204 (2000)

    Article  CAS  Google Scholar 

  32. M. H. Huang, S. Mao, H. Feick, Science 292, 1897 (2001)

    Article  CAS  Google Scholar 

  33. H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys. 91, 1993 (2002)

    Article  CAS  Google Scholar 

  34. T. Yatsui, H. Jeong, M. Ohtsu, Appl. Phys. B 93, 199 (2008)

    Article  CAS  Google Scholar 

  35. E. A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998)

    Article  CAS  Google Scholar 

  36. L. Spanhel, M. A. Anderseon, J. Am. Chem. Soc. 113, 2826 (1991)

    Article  CAS  Google Scholar 

  37. L. E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  CAS  Google Scholar 

  38. M. Brust, C. J. Kiely, Colloids Surf. A 202, 175 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work in Sect. 4.2 is supported by New Energy and Industrial Technology Development Organization (NEDO) Special Courses: A comprehensive activity for personnel training and industry-academia collaboration based on NEDO projects.

The works in Sect. 4.3 are supported in partial by the Global Center of Excellence (G-COE) "Secure-Life Electronics" sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Nomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nomura, W., Yatsui, T., Ohtsu, M. (2010). Nonadiabatic Near-Field Optical Polishing and Energy Transfers in Spherical Quantum Dots. In: Ohtsu, M. (eds) Progress in Nano-Electro-Optics VII. Springer Series in Optical Sciences, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03951-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03951-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03950-8

  • Online ISBN: 978-3-642-03951-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics