Skip to main content

Linear-Time Recognition of Probe Interval Graphs

  • Conference paper
Algorithms - ESA 2009 (ESA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5757))

Included in the following conference series:

Abstract

The interval graph for a set of intervals on a line consists of one vertex for each interval, and an edge for each intersecting pair of intervals. A probe interval graph is a variant that is motivated by an application to genomics, where the intervals are partitioned into two sets: probes and non-probes. The graph has an edge between two vertices if they intersect and at least one of them is a probe. We give a linear-time algorithm for determining whether a given graph and partition of vertices into probes and non-probes is a probe interval graph. If it is, we give a layout of intervals that proves that it is. In contrast to previous algorithms for the problem, our algorithm can determine whether the layout is uniquely constrained. As part of the algorithm we solve the consecutive-ones probe matrix problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzer, S.: On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. U.S.A. 45, 1607–1620 (1959)

    Article  Google Scholar 

  2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandler, D.B., Guo, J., Kloks, T., Niedermeier, R.: Probe matrix problems: Totally balanced matrices. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 368–377. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chang, G.J., Kloks, T., Liu, J., Peng, S.-L.: The PIGSs full monty - a floor show of minimal separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 521–532. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. McGraw Hill, Boston (2001)

    MATH  Google Scholar 

  6. Fulkerson, D.R., Gross, O.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  8. Golumbic, M.C.: Matrix sandwich problems. Linear Algebra and Applications 277, 239–251 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge studies in advanced mathematics 89, New York (2004)

    Google Scholar 

  10. Johnson, J.L., Spinrad, J.P.: A polynomial time recognition algorithm for probe interval graphs. In: SODA 2001, pp. 477–486. Association for Computing Machinery, New York (2001)

    Google Scholar 

  11. McConnell, R.M., de Montgolfier, F.: Algebraic operations on PQ trees and modular decomposition trees. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 421–432. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. McConnell, R.M., Spinrad, J.P.: Construction of probe interval models. In: SODA 2002, pp. 866–875. Association for Computing Machinery, New York (2002)

    Google Scholar 

  14. McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Applied Mathematics 88, 315–324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rose, D., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Uehara, R.: Canonical data structure for interval probe graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 859–870. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Zhang, P.: United states patent 5667970: Method of mapping DNA fragments (July 3, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McConnell, R.M., Nussbaum, Y. (2009). Linear-Time Recognition of Probe Interval Graphs. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04128-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04127-3

  • Online ISBN: 978-3-642-04128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics