Skip to main content

Signaling Pathways that Regulate C. elegans Life Span

  • Chapter
  • First Online:
IGFs:Local Repair and Survival Factors Throughout Life Span

Abstract

Insulin-like growth factor signaling and other endocrine axes contribute to stress and longevity regulation in C. elegans and other animals. By genetic and functional genomic analysis, we have identified players in this pathway. Many of these genes are conserved and likely to mediate endocrine regulation of longevity across the animal kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anson R, Hasford R (2004) Mitochondrial influence on aging rate in Caenorhabditis elegans. Aging Cell 3:29–34

    CAS  PubMed  Google Scholar 

  • Apfeld J, Kenyon C (1998) Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95:199–210

    CAS  PubMed  Google Scholar 

  • Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295:502–505

    CAS  PubMed  Google Scholar 

  • Arantes-Oliveira N, Berman JR, Kenyon C (2003) Healthy animals with extreme longevity. Science 302:611

    CAS  PubMed  Google Scholar 

  • Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-111: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    CAS  PubMed  Google Scholar 

  • Berdichevsky A, Guarente L (2006) A stress response pathway involving sirtuins, forkheads and 14-3-3 proteins. Cell Cycle 5:2588–2591

    CAS  PubMed  Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz H, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-4 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177

    CAS  PubMed  Google Scholar 

  • Berman J, Kenyon C (2006) Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124:1055–1068

    CAS  PubMed  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    PubMed  Google Scholar 

  • Boehm M, Slacek F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957

    CAS  PubMed  Google Scholar 

  • Breen GA, Miller DL, Holmans PL, Welch G (1986) Mitochondrial DNA of two independent oligomycin-resistant Chinese hamster ovary cell lines contains a single nucleotide change in the ATPase 6 gene. J Biol Chem 261:11680–11685

    CAS  PubMed  Google Scholar 

  • Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    CAS  PubMed  Google Scholar 

  • Curran S, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3: e56

    Google Scholar 

  • Cypser JR, Johnson TE (2003) Hormesis in Caenorhabditis elegans dauer-defective mutants. Biogerontology 4:203–214

    CAS  PubMed  Google Scholar 

  • Cypser JR, Tedesco P, Johnson TE (2006) Hormesis and aging in Caenorhabditis elegans. Exp Gerontol 41:935–939

    CAS  PubMed  Google Scholar 

  • Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834

    CAS  PubMed  Google Scholar 

  • Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    CAS  PubMed  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–819

    CAS  PubMed  Google Scholar 

  • Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    CAS  PubMed  Google Scholar 

  • Finch CE, Austad SN (2001) History and prospects: symposium on organisms with slow aging. Exp Gerontol 36:593–597

    CAS  PubMed  Google Scholar 

  • Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Human Genet 2:435–462

    CAS  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    CAS  PubMed  Google Scholar 

  • Garofalo RS (2002) Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab 13:156–162

    CAS  PubMed  Google Scholar 

  • Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Calderwood SB, Ruvkun G, Ausubel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300:1921

    CAS  PubMed  Google Scholar 

  • Gems D (2000) An integrated theory of ageing in the nematode Caenorhabditis elegans. J Anat 197 Pt 4:521–528

    Google Scholar 

  • Gems D, Riddle DL (2000a) Defining wild-type life span in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 55:B215–219

    Google Scholar 

  • Gems D, Riddle DL (2000b) Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154:1597–1610

    CAS  PubMed  Google Scholar 

  • Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4:127–137

    CAS  PubMed  Google Scholar 

  • Golden TR, Melov S (2004) Microassay analysis of gene expression with age in individual nematodes. Aging Cell 3:111–124

    CAS  PubMed  Google Scholar 

  • Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    CAS  PubMed  Google Scholar 

  • Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128

    CAS  PubMed  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates life span and resistance to oxidative stress in mice. Nature 421:182–187

    CAS  PubMed  Google Scholar 

  • Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. Embo J 18:22–27

    CAS  PubMed  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. Faseb J 13:1385–1393

    CAS  PubMed  Google Scholar 

  • Honda Y, Honda S (2002) Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann NY Acad Sci 959:466–474

    CAS  PubMed  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002a) Axenic growth up-regulates mass-specific metabolic rate, stress resistance and extends life span in Caenorhabditis elegans. Exp Gerontol 37:1371–8

    PubMed  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002b) Ageing is reversed and metabolism is reset to young levels in recoverinv dauer larvae of C. elegans. Exp Gerontol 37:1015–21

    CAS  PubMed  Google Scholar 

  • Houthoofd K., Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002c) No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 37:1359–69

    PubMed  Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TW, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signaling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954

    CAS  PubMed  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, Matthijssens F, De Vreese A, Van Eygen S, Vanfleteren JR (2005a) DAF-2 pathway mutations and food restriction in aging Caenorhabditis elegans differentially affect metabolism. Neurobiol Aging 26:689–696

    CAS  PubMed  Google Scholar 

  • Houthoofd K, Fidalgo MA, Hoogewijs D, Braeckman BP, Lenaerts I, Brys K, Matthijssens F, De Vreese A, Van Eygen S, Muñoz MJ, Vanfleteren JR (2005b) Metabolism, physiology and stress defense in three aging Ins/IGF-1 mutants of the nematode Caenorhabditis elegans. Aging Cell 4:87–95

    CAS  PubMed  Google Scholar 

  • Houthoofd K, Gems D, Hohnson TE, Vanfleteren JR (2007) Dietary restriction in the nematode Caenorhabditis elegans. Interdisc Top Gerontol 35:98–114

    CAS  Google Scholar 

  • Howitz Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cervisiae life span. Nature 425:191–196

    Google Scholar 

  • Hsin H, Kenyon C (1999) Signals from the reproductive system regulated the life span of C. elegans. Nature 399:362–366

    CAS  PubMed  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:11142–1145

    Google Scholar 

  • Hsu JM, Huang J, Meluh PB, Laurent BC (2003) The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 23:3202–3215

    CAS  PubMed  Google Scholar 

  • Huss M, Ingenhorst G, König S, Gassel M, Dröse S, Zeeck A, Altendorf K, Wieczorek H (2002) Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. J Biol Chem 277:40444–40548

    Google Scholar 

  • Ibanez-Ventoso C, Yang M, Guo S, Robins H, Padgett RW, Driscoll M (2006) Modulated microRNA expression during adult life span in Caenorhabditis elegans. Aging Cell 5:235–246

    CAS  PubMed  Google Scholar 

  • Johnson TE, Lithgow GJ, Murakami S (1996) Hypothesis: interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol A Biol Sci Med Sci 51:B392–395

    Google Scholar 

  • Johnson TE, Cypser J, de Castro E, de Castro S, Henderson S, Murakami S, Rikke B, Tedesco P, Link C (2000) Gerontogenes mediate health and longevity in nematodes through increasing resistance to environmental toxins and stressors. Exp Gerontol 35:687–694

    CAS  PubMed  Google Scholar 

  • Johnson TE, Henderson S, Murakami S, de Castro E, de Castro SH, Cypser J, Rikke B, Tedesco P, Link C (2002) Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis 25:197–206

    CAS  PubMed  Google Scholar 

  • Kawano T, Kataoka N, Abe S, Ohtani M, Honda Y, Honda S, Kimura Y (2005) Lifespan extending activity of substances secreted by the nematode Caenorhabditis elegans that include the dauer-inducing pheromone. Biosci Biotechnol Biochem 69:2479–2481

    CAS  PubMed  Google Scholar 

  • Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645–649

    CAS  PubMed  Google Scholar 

  • Kenyon C (1996) Ponce d'elegans: genetic quest for the fountain of youth. Cell 84:501–504

    CAS  PubMed  Google Scholar 

  • Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    CAS  PubMed  Google Scholar 

  • Kenyon C (2004) My adventures with genes from the fountain of youth. Harvey Lect 100:29–70

    PubMed  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    CAS  PubMed  Google Scholar 

  • Kenyon C, Gerson SL (2007) The role of DNA damage repair in aging of adult stem cells. Nucl Acids Res 35:7557–7565

    CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    CAS  PubMed  Google Scholar 

  • Kim SH, Holway AH, Wolff S, Dillin A, Michael WM (2007) SML-1/PPH-4.1-mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos. J Cell Biol 179:41–52

    CAS  PubMed  Google Scholar 

  • Kim Y, Sun H (2007) Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal life span. Aging Cell 6:489–503

    CAS  PubMed  Google Scholar 

  • Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensatin. Cell 90:625–634

    CAS  PubMed  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    CAS  PubMed  Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429

    CAS  PubMed  Google Scholar 

  • Lakowski B, Hekimi S (1996) Determination of life-span in Caenorbhabditis elegans by four clock genes. Science 272:1010–1013

    CAS  PubMed  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    CAS  PubMed  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative stress in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:8905–8909

    CAS  PubMed  Google Scholar 

  • Larsen PL (2001) Asking the age-old questions. Nature Genet 28:102–104

    CAS  PubMed  Google Scholar 

  • Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295:120–123

    CAS  PubMed  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139:1567–1583

    CAS  PubMed  Google Scholar 

  • Lee BH, Amon A (2003) Role of polo-kinase CDC5 in programming meiosis I chromosome segregation. Science 300:482–486

    CAS  PubMed  Google Scholar 

  • Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003a) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300:644–647

    CAS  PubMed  Google Scholar 

  • Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003b) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet 33:40–48

    CAS  PubMed  Google Scholar 

  • Libina N, Berman J, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of life span. Cell 115:489–502

    CAS  PubMed  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    CAS  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    CAS  PubMed  Google Scholar 

  • McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–121

    CAS  PubMed  Google Scholar 

  • McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature of Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279:44533–44543

    CAS  PubMed  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-2-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    CAS  PubMed  Google Scholar 

  • Morris JZ, Navarro C, Lehmann R (2003) Identification and analysis of mutations in bob, Doa and eight new genes required for oocyte specification and development in Drosophila melanogaster. Genetics 164:1435–1446

    CAS  PubMed  Google Scholar 

  • Morris JZ, Hong A, Lilly MA, Lehmann R (2005) twin, a CCR4 homolog, regulated cyclin poly(A) tail length to permit Drosophila oogenesis. Development 132:1165–1174

    CAS  PubMed  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the life span of Caenorhabditis elegans. Nature 424:277–283

    CAS  PubMed  Google Scholar 

  • Nakae J, Biggs WH 3rd, Kitamura T, Cavenee WK, Wright CV, Arden KC, Accili D (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nature Genet 32:245–253

    CAS  PubMed  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    CAS  PubMed  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    CAS  PubMed  Google Scholar 

  • Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    CAS  PubMed  Google Scholar 

  • Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120:461–472

    CAS  PubMed  Google Scholar 

  • Pletcher SD, Khazaeli AA, Curtsinger JW (2000) Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J Gerontol A Biol Sci Med Sci 55:B381–389

    Google Scholar 

  • Rea SL, Ventura N, Johnson TW (2007) Relationship between mitochondrial electron transport chain dysfunction, development and life extension in Caenorhabditis elegans. PLoS Biol 5:e259

    Google Scholar 

  • Russell P, Nurse P (1987a) The mitotic inducer nim1+ functions in a regulatory network of protein kinase homologs controlling the initiation of mitosis. Cell 49:569–576

    CAS  PubMed  Google Scholar 

  • Russell P, Nurse P (1987b) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49:559–567

    CAS  PubMed  Google Scholar 

  • Russell RL, Seppa RI (1987) Genetic and environmental manipulation of aging in Caenorhabditis elegans. Basic Life Sci 42:35–48

    CAS  PubMed  Google Scholar 

  • Samuelson AV, Carr CE, Ruvkun G (2007a) Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev 21:2976–2994

    CAS  PubMed  Google Scholar 

  • Samuelson AV, Klimczak RR, Thompson DB, Carr CE, Ruvkun G (2007b) Identification of Caenorhabditis elegans genes regulating longevity using enhanced RNAi-sensitive strains. Cold Spring Harb Symp Quant Biol 72:489–497

    CAS  PubMed  Google Scholar 

  • Sieburth D, Ch'ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, Dupuy D, Rual JF, Hill DE, Vidal M, Ruvkun G, Kaplan JM (2005) Systematic analysis of genes required for synapse structure and function. Nature 436:510–517

    CAS  PubMed  Google Scholar 

  • Syntichaki P, Samara C, Tavernarakis N (2005) The vacuolar H+ -ATPase mediates intracellular acidificaion required for neurodegeneration in C. elegans. Curr Biol 15:1249–1254

    CAS  PubMed  Google Scholar 

  • Tatar M (2005) SIR2 calls upon the ER. Cell Metab 2:281–282

    CAS  PubMed  Google Scholar 

  • Tercero JA, Espinosa JC, Lacalle RA, Jimenez A (1996) The biosynthetic pathway of the aminonucleoside antibiotic puromycin, as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Cem 271:1578–1590

    Google Scholar 

  • Vanfleteren JR, De Vreese A (1995) The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. Faseb J 9:1355–1361

    CAS  PubMed  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F (2003) Genetics: influence of TOR kinase on life span in C. elegans. Nature 426:620

    CAS  PubMed  Google Scholar 

  • Visnawathan M, Kim S, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615

    Google Scholar 

  • Wadsworth WG, Riddle DL (1989) Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev Biol 132:167–173

    CAS  PubMed  Google Scholar 

  • Wolff S, Dillin A (2006b) The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 41:894–903

    PubMed  Google Scholar 

  • Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A (2006a) SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124:1039–1053

    CAS  PubMed  Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290:147–150

    CAS  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    CAS  PubMed  Google Scholar 

  • Yu BP, Chung HY (2001) Stress resistance by caloric restriction for longevity. Ann NY Acad Sci 928:39–47

    CAS  PubMed  Google Scholar 

  • Yu H, Larsen PL (2001) DAF-16-dependent and independent expression targets of DAF-2 insulin receptor-like pathway in Caenorhabditis elegans include FKBPs. J Mol Biol 314:1017–1028

    CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Ruvkun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruvkun, G., Samuelson, A.V., Carr, C.E., Curran, S.P., Shore, D.E. (2010). Signaling Pathways that Regulate C. elegans Life Span. In: Clemmons, D., Robinson, I., Christen, Y. (eds) IGFs:Local Repair and Survival Factors Throughout Life Span. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04302-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04302-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04301-7

  • Online ISBN: 978-3-642-04302-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics