Skip to main content

Many-Body Physics from a Quantum Information Perspective

  • Chapter
  • First Online:
Modern Theories of Many-Particle Systems in Condensed Matter Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 843))

Abstract

The quantum information approach to many-body physics has been very successful in giving new insights and novel numerical methods. In these lecture notes we take a vertical view of the subject, starting from general concepts and at each step delving into applications or consequences of a particular topic. We first review some general quantum information concepts like entanglement and entanglement measures, which leads us to entanglement area laws. We then continue with one of the most famous examples of area-law abiding states: matrix product states, and tensor product states in general. Of these, we choose one example (classical superposition states) to introduce recent developments on a novel quantum many-body approach: quantum kinetic Ising models. We conclude with a brief outlook of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to entanglement swapping [13], one must suitably enlarge the notion of preparation of entangled states. So, an entangled state between two particles can be prepared if and only if either the two particles (call them A and B) themselves come together to interact at a time in the past, or two other particles (call them C and D) do the same, with C having interacted beforehand with A and D with B.

  2. 2.

    A unitary operator on \({\mathcal{H}}_{A}\otimes {\mathcal{H}}_{B}\) is said to be “nonlocal” if it is not of the form \(U_A \otimes U_B,\) where \(U_A\) is a unitary operator acting on \({\mathcal{H}}_{A}\) and \(U_B\) acts on \({\mathcal{H}}_{B}.\)

  3. 3.

    A hyperplane is a linear subspace with dimension smaller by one than the dimension of the space itself.

  4. 4.

    Let \({\mathcal{H}}\) be some Hilbert space. Then the set \({\mathcal{B}}({\mathcal{H}})\) of linear bounded operators acting on \({\mathcal{H}}\) is also a Hilbert space with the Hilbert-Schmidt scalar product \(\langle A|B\rangle=\hbox{tr}(A^{\dagger} B) \,(A,B\in{\mathcal{B}}({\mathcal{H}})).\)

  5. 5.

    By \(\Uplambda_1\circ\Uplambda_2\) we denote the composition of two maps \(\Uplambda_i \,(i=1,2),\) i.e., a map that acts on a given operator X as \(\Uplambda_1\circ\Uplambda_2(X)=\Uplambda_1(\Uplambda_2(X)).\)

  6. 6.

    For a more detailed axiomatic description, and other properties of entanglement measures, the reader is encouraged to consult, e.g., Refs. [8, 50, 51].

  7. 7.

    In the standard basis \(\sigma_{y}\) is given by \(\sigma_{y}=-i|0\rangle\langle1|+i|1\rangle\langle 0|.\)

  8. 8.

    In general the gamma function is defined through

    $$ \Upgamma(z)=\int\limits_{0}^{\infty}t^{z-1}e^{-t}\hbox{d}t \qquad (z\in{\mathbb{C}}). (6.26) $$

    For z being positive integers z=n the gamma function is related to the factorial function via \(\Upgamma(n)=(n-1)!\)

  9. 9.

    The bigamma function is defined as \(\Uppsi(z)=\Upgamma^{\prime}(z)/\Upgamma(z)\) and for natural z = n it takes the form

    $$ \Uppsi(n)=-\gamma+\sum_{k=1}^{n-1}{\frac{1}{n}} (6.34) $$

    with \(\gamma\) being the Euler constant, of which exact value is not necessary for our consideration as it vanishes in Eq. 6.33.

  10. 10.

    For results concerning other kind of systems one can consult Ref. [69].

  11. 11.

    Let us shortly recall that the notation \(f(x)=O(g(x))\) means that there exist a positive constant c and \(x_{0}>0\) such that for any \(x\geq x_{0}\) it holds that \(f(x)\leq cg(x).\)

  12. 12.

    The notation \(f(x)=\Upomega(g(x))\) means that there exist \(c>0\) and \(x_{0}>0\) such that \(f(x)\geq cg(x)\) for all \(x\geq x_{0}.\)

  13. 13.

    Recall that the quantum Rényi entropy is defined as

    $$ S_{\alpha}={\frac{1} {1-\alpha}}\log_{2}\left[\hbox{Tr}\left(\varrho^{\alpha}\right)\right] (6.43) $$

    where \(\alpha\in[0,\infty].\) For \(\alpha=0\) one has \(S_{0}(\varrho)=\log_{2}\hbox{rank}(\varrho)\) and \(S_{\infty}=-\log_{2}\lambda_{\rm max}\) with \(\lambda_{\rm max}\) being the maximal eigenvalue of \(\varrho.\)

  14. 14.

    It should be noticed that one can have much stronger condition for such scaling of entropy. To see this explicitly, say that R is a cubic region \(R=\{1,\ldots,n\}^{D}\) meaning that \(|\partial R|=n^{D-1}\) and \(|R|=n^{D}.\) Then since \(\lim\nolimits_{n\to\infty}[(\log n)/n^{\epsilon}]=0\) for any (even arbitrarily small) \(\epsilon>0,\) one easily checks that \(S(\varrho_{R})/|\partial R|^{1+\epsilon}\to 0\) for \(|\partial R|\to \infty.\)

  15. 15.

    The conditional Shannon entropy is defined as \(H(A|B)=H(A,B)-H(B).\)

  16. 16.

    This is the reason why the Glauber model is also known as the kinetic Ising model (KIM).

References

  1. Jaksch, D., Briegel, H.-J., Cirac, J.I., Gardiner, C.W., Zoller, P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975 (1999)

    Article  ADS  Google Scholar 

  2. Osborne, T.J., Nielsen, M.A.: Entanglement, quantum phase transitions, and density matrix renormalization. Quantum Inf. Proc. 1, 45 (2002)

    Article  MathSciNet  Google Scholar 

  3. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1992)

    Article  ADS  Google Scholar 

  8. Horodecki, R., Horodecki, M., Horodecki, P., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  10. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Sanpera, A., Terrach, R., Vidal, G.: Local description of quantum inseparability. Phys. Rev. A 58, 826 (1998)

    Google Scholar 

  12. Samsonowicz, J., Kuś, M., Lewenstein, M.: Phys. Rev. A 76, 022314 (2007)

    Google Scholar 

  13.  Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  14. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Distinguishing separable and entangled states. Phys. Rev. Lett. 88, 187904 (2002)

    Article  ADS  Google Scholar 

  16. Hulpke, F., Bruß, D.: A two-way algorithm for the entanglement problem. J. Phys. A: Math. Gen. 38, 5573 (2005)

    Article  MATH  ADS  Google Scholar 

  17. Gurvits, L.: Classical complexity and quantum entanglement. STOC 69, 448 (2003)

    MathSciNet  Google Scholar 

  18. Choi, M.-D.: Positive linear maps. Proc. Symp. Pure Math. 38, 583 (1982)

    Google Scholar 

  19. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett 77, 1413 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed–state entanglement and distillation: is there a “bound” entanglement in nature?. Phys. Rev. Lett. 80, 5239 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Google Scholar 

  22. DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Thapliyal, A.V.: Evidence for bound entangled states with negative partial transpose. Phys. Rev. A 61, 062312 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Dür, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Bishop, E., Bridges, D.: Constructive Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  26. Terhal, B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N–level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Alg. Appl. 10, 285 (1975)

    Article  MATH  Google Scholar 

  29. Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  30. Stinespring, W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211 (1955)

    MATH  MathSciNet  Google Scholar 

  31. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275 (1972)

    Article  MATH  ADS  Google Scholar 

  32. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283, 1 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10, 165 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Tanahashi, K., Tomiyama, J.: Indecomposable positive maps in matrix algebras. Can. Math. Bull 31, 308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (2000)

    Article  ADS  Google Scholar 

  36. Cerf, N.J., Adami, C., Gingrich, R.M.: Reduction criterion for separability. Phys. Rev. A 60, 898 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  37. Breuer, H.-P.: Optimal entanglement criterion for mixed states. Phys. Rev. Lett. 97, 080501 (2006)

    Article  ADS  Google Scholar 

  38. Hall, W.: A new criterion for indecomposability of positive maps. J. Phys. A 39, 14119 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Woronowicz, S.: Nonextendible positive maps. Comm. Math. Phys. 51, 243 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Lewenstein, M., Kraus, B., Cirac, J.I., Horodecki, P.: Optimization of entanglement witnesses. Phys. Rev. A 62, 052310 (2000)

    Article  ADS  Google Scholar 

  41. Terhal, B.M.: A family of indecomposable positive linear maps based on entangled quantum states. Lin. Alg. Appl. 323, 61 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett 78, 2275 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. DiVincenzo, D.P., Fuchs, C.A., Mabuchi, H., Smolin, J.A., Thapliyal, A., Uhlmann, A.: In Proceedings of the first NASA International Conference on Quantum Computing and Quantum Communication. Springer (1998)

    Google Scholar 

  45. Laustsen, T., Verstraete, F., van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003)

    MATH  MathSciNet  Google Scholar 

  46. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  47. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47, 355 (2000)

    ADS  MathSciNet  Google Scholar 

  48. Jonathan, D., Plenio, M.B.: Minimal conditions for local pure-state entanglement manipulation. Phys. Rev. Lett. 83, 1455 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. Horodecki, M., Sen(De), A., Sen, U.: Dual entanglement measures based on no local cloning and no local deleting. Phys. Rev. A 70, 052326 (2004)

    Article  ADS  Google Scholar 

  50. Horodecki, M.: Distillation and bound entanglement. Quantum Inf. Comput. 1, 3 (2001)

    MATH  MathSciNet  Google Scholar 

  51. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comp. 7, 1 (2007)

    MATH  MathSciNet  Google Scholar 

  52. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  53. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  54. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  55. Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)

    Article  ADS  Google Scholar 

  56. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  57. Rungta, P., Bužek, V.V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Google Scholar 

  58. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)

    Article  ADS  Google Scholar 

  59. Aolita, L., Mintert, F.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97, 050501 (2006)

    Article  ADS  Google Scholar 

  60. Walborn, S.P., Ribero, P.H.S., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature 440, 1022 (2006)

    Article  ADS  Google Scholar 

  61. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  62. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  63. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  66. Bekenstein, J.D.: Black holes and information theory. Contemp. Phys. 45, 31 (2004)

    Article  ADS  Google Scholar 

  67. Hawking, S.W.: Black hole explosions?. Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  68. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy – a review. Rev. Mod. Phys. 82, 277 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. Calabrese, P., Cardy, J., Doyon, B.: Special issue: entanglement entropy in extended quantum systems. J. Phys. A 42, 500301 (2009)

    Article  MathSciNet  Google Scholar 

  71. Lubkin, E.: Entropy of an n–system from its correlation with a k–reservoir. J. Math. Phys. 19, 1028 (1978)

    Article  MATH  ADS  Google Scholar 

  72. Lloyd, S., Pagels, H.: Complexity as thermodynamic depth. Ann. Phys. 188, 186 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  73. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. Bengtsson, I.,  Zyczkowski, K.: Geometry of Quantum States.. Cambridge University Press, Cambridge, MA (2006)

    Book  Google Scholar 

  75. Foong, S.K., Kanno, S.: Proof of a Page’s conjecture on the average entropy of a subsystem. Phys. Rev. Lett. 72, 1148 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  76. Sen, S.: Average entropy of a quantum subsystem. Phys. Rev. Lett. 77, 1 (1996)

    Article  ADS  Google Scholar 

  77. Sanchez-Ruíz, J.: Simple Proof of Page’s conjecture on the average entropy of a subsystem. Phys. Rev. E 52, 5653 (1995)

    Google Scholar 

  78. Hastings, M.B.: An area law for one-dimensional quantum system. J. Stat. Mech. Theory Exp. 2007, 08024 (2007)

    Article  MathSciNet  Google Scholar 

  79. Eisert, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Comm. Math. Phys. 28, 251 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  80. Masanes, L.: Area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009)

    Article  ADS  Google Scholar 

  81. Dür, W., Hartmann, L., Hein, M., Lewenstein, M., Briegel, H.-J.: Entanglement in spin chains and lattices with long-range Ising-type interactions. Phys. Rev. Lett. 94, 097203 (2005)

    Google Scholar 

  82. Eisert, J., Osborne, T.: General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  83. Latorre, J.I., Riera, A.: A short review on entanglement in quantum spin systems. J. Phys. A 42, 504002 (2009)

    Article  MathSciNet  Google Scholar 

  84. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  85. Jin, B.-Q., Korepin, V.E.: Quantum spin chain, Toeplitz deteminants and the Ficher–Hartwig conjecture. J. Stat. Phys. 116, 79 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  86. Its, A.R., Jin, B.-Q., Korepin, V.E.: Entanglement in the XY spin chain. J. Phys. A: Math. Gen. 38, 2975 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  87. Keating, J.P., Mezzadri, F.: Entanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory. Phys. Rev. Lett. 94, 050501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  88. Eisert, J., Cramer, M.: Single-copy entanglement in critical quantum spin chains. Phys. Rev. A 72, 042112 (2005)

    Article  ADS  Google Scholar 

  89. Calabrese, P., Cardy, J.: Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009)

    Article  MathSciNet  Google Scholar 

  90. Wolf, M.M.: Violation of the entropic area law for fermions. Phys. Rev. Lett. 96, 010404 (2006)

    Article  ADS  Google Scholar 

  91. Gioev, D., Klich, I.: Entanglement entropy of fermions in any dimension and the Widom conjecture. Phys. Rev. Lett. 96, 100503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  92. Farkas, S., Zimboras, Z.: The von Neumann entropy asymptotics in multidimensional fermionic systems. J. Math. Phys. 48, 102110 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  93. Hastings, M.B.: Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett. 93, 140402 (2004)

    Article  ADS  Google Scholar 

  94. Boyd, S., Vanderberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, MA (2004)

    MATH  Google Scholar 

  95. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  96. Wolf, M.M., Verstraete, F., Hastings, M.B., Cirac, J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  97. Verstraete, F., Popp, M., Cirac, J.I.: Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)

    Article  ADS  Google Scholar 

  98. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  99. Perez-García, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Matrix product state representation. Quantum Inf. Comput. 7, 401 (2007)

    MATH  MathSciNet  Google Scholar 

  100. Verstraete, F., Cirac J.I.: Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions. cond-mat/0407066 (2004)

    Google Scholar 

  101. Schuch, N., Wolf, M.M., Verstraete, F., Cirac, J.I.: Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  102. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799 (1987)

    Article  ADS  Google Scholar 

  103. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  104. Majumdar, C.K., Ghosh, D.K.: On next-nearest-neighbor interaction in linear chain. I. J. Math. Phys. 10, 1388 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  105. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys 4, 294 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  106. Deker, U., Haake, F.: Renormalization group transformation for the master equation of a kinetic Ising chain. Z. Phys. B 35, 281 (1979)

    Article  ADS  Google Scholar 

  107. Kimball, J.C.: The kinetic Ising model: exact susceptibilities of two simple examples. J. Stat. Phys. 21, 289 (1979)

    Article  ADS  Google Scholar 

  108. Haake, F., Thol, K.: Universality classes for one dimensional kinetic Ising models. Z. Phys. B 40, 219 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  109. Felderhof, B.U.: Spin relaxation of the Ising chain. Rep. Math. Phys. 1, 215 (1971)

    Google Scholar 

  110. Siggia, E.D.: Pseudospin formulation of kinetic Ising models. Phys. Rev. B 16, 2319 (1977)

    Google Scholar 

  111. Heims, S.P.: Master equation for Ising model. Phys. Rev. 138, A587 (1965)

    Google Scholar 

  112. Kawasaki, K. In: Domb, C., Green, M.S. (eds.) Phase Transition and Critical Phenomena, vol. 2, pp. 443–501. Academic Press, London (1972)

    Google Scholar 

  113. Augusiak, R., Cucchietti, F.M., Haake, F., Lewenstein, M.: Quantum kinetic Ising models. New J. Phys. 12, 025021 (2010)

    Google Scholar 

  114. Hilhorst, H.J., Suzuki, M., Felderhof, B.U.: Kinetics of the stochastic Ising chain in a two–flip model. Physica 60, 199 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  115. Jordan, P., Wigner, E.: Über das Paulische Aequivalenzverbot. Z. Phys. 47, 631 (1928)

    Article  ADS  Google Scholar 

  116. Bogoliubov, N.N.: On a new method in the theory of superconductivity. Nuovo Cimento 7, 794 (1958)

    Article  Google Scholar 

  117. Valatin, J.G.: Comments on the theory of superconductivity. Nuovo Cimento 7, 843 (1958)

    Article  MathSciNet  Google Scholar 

  118. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  119. Zanardi, P., Paunković, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  120. Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  121. Zhang, C., Tewari, S., Lutchyn, R., Sarma, S.D.: px+ipy Superfluid from s-wave interactions of fermionic cold atoms. Phys. Rev. Lett. 101, 160401 (2008)

    Article  ADS  Google Scholar 

  122. Zhang, J., Cucchietti, F.M., Chandrashekar, C.M., Laforest, M., Ryan, C.A., Ditty, M., Hubbard, A., Gamble, J.K., Laflamme, R.: Direct observation of quantum criticality in Ising spin chains. Phys. Rev. A 79, 012305 (2009)

    Article  ADS  Google Scholar 

  123. Li, H., Haldane, F.D.M.: Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008)

    Article  ADS  Google Scholar 

  124. Calabrese, P., Lefevre, A.: Entanglement spectrum in one-dimensional systems. Phys. Rev. A 78, 032329 (2008)

    Article  ADS  Google Scholar 

  125. Vidal, G.: Entanglement renormalization. Phys. Rev. Lett. 99, 220405 (2007)

    Article  ADS  Google Scholar 

  126. Clark, S.R., Jaksch, D.: Dynamics of the superfluid to Mott-insulator transition in one dimension. Phys. Rev. A 70, 043612 (2004)

    Article  ADS  Google Scholar 

  127. Kraus, C.V., Schuch, N., Verstraete, F., Cirac, J.I.: Fermionic projected entangled pair states. Phys. Rev. A 81, 052338 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  128. Corboz, P., Vidal, G.: Fermionic multiscale entanglement renormalization ansatz. Phys. Rev. B 80, 165129 (2009)

    Article  ADS  Google Scholar 

  129. Corboz, P., Evenbly, G., Verstraete, F., Vidal, G.: Simulation of interacting fermions with entanglement renormalization. Phys. Rev. A 81, 010303 (2010)

    Article  ADS  Google Scholar 

  130. Barthel, T., Pineda, C., Eisert, J.: Contraction of fermionic operator circuits and the simulation of strongly correlated fermions. Phys. Rev. A 80, 042333 (2009)

    Article  ADS  Google Scholar 

  131. Corboz, P., Orús, R., Bauer, B., Vidal, G.: Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states. Phys. Rev. B 81, 165104 (2010)

    Article  ADS  Google Scholar 

  132. Pineda, C., Barthel, T., Eisert, J.: Unitary circuits for strongly correlated fermions. Phys. Rev. A 81, 050303 (2010)

    Article  ADS  Google Scholar 

  133. Troyer, M., Wiese, U.-J.: Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005)

    Article  ADS  Google Scholar 

  134. Kim, K., Chang, M.-S., Korenblit, S., Islam, R., Edwards, E.E., Freericks, J.K., Lin, G.-D., Duan, L.-M., Monroe, C.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590 (2010)

    Article  ADS  Google Scholar 

  135. Jördens, R., Tarruell, L., Greif, D., Uehlinger, T., Strohmaier, N., Moritz, H., Esslinger, T., DeLeo, L., Kollath, C., Georges, A., Scarola, V., Pollet, L., Burovski, E., Kozik, E., Troyer, M.: Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice. Phys. Rev. Lett. 104, 180401 (2010)

    Article  Google Scholar 

  136. Temme, K., Wolf, M.M., Verstraete, F.: Stochastic exclusion processes versus coherent transport. e-print arXiv:0912.0858 (2009)

    Google Scholar 

  137. Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009)

    Article  Google Scholar 

  138. Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008)

    Article  ADS  Google Scholar 

  139. Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Ll. Masanes for helpful discussion. We acknowledge the support of Spanish MEC/MINCIN projects TOQATA (FIS2008-00784) and QOIT (Consolider Ingenio 2010), ESF/MEC project FERMIX (FIS2007-29996-E), EU Integrated Project SCALA, EU STREP project NAMEQUAM, ERC Advanced Grant QUAGATUA, Caixa Manresa, AQUTE, and Alexander von Humboldt Foundation Senior Research Prize.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Augusiak or M. Lewenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Augusiak, R., Cucchietti, F., Lewenstein, M. (2012). Many-Body Physics from a Quantum Information Perspective. In: Cabra, D., Honecker, A., Pujol, P. (eds) Modern Theories of Many-Particle Systems in Condensed Matter Physics. Lecture Notes in Physics, vol 843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10449-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10449-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10448-0

  • Online ISBN: 978-3-642-10449-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics