Skip to main content

On High-Resolution Global Gravity Field Modelling by Direct BEM Using DNSC08

  • Conference paper
  • First Online:
Gravity, Geoid and Earth Observation

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 135))

  • 2553 Accesses

Abstract

The paper deals with the global gravity field modelling using the boundary element method (BEM). The direct BEM formulation is applied to a solution to the fixed gravimetric boundary-value problem. We present a new model of geopotential at ocean obtained by BEM using the DNSC08 global marine gravity field. This model is compared with EGM-2008. High performance computations together with an elimination of the far zones’ interactions allow a very refined integration over the all Earth’s surface. Such approach results in a high-resolution global gravity field modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, O.B., P. Knudsen, and P. Berry (2008). The DNSC08 ocean wide altimetry derived gravity field. Presented at EGU-2008, Vienna, Austria, April.

    Google Scholar 

  • Aoyama, Y. and J. Nakano (1999). RS/6000 SP: Practical MPI Programming. IBM, Poughkeepsie, New York.

    Google Scholar 

  • Barrett, R., M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst (1994). Templates for the solution of linear systems: building blocks for iterative methods. http://www.netlib.org/ templates/Templates.html

  • Becker, J. and D. Sandwell (2003). Accuracy and resolution of shuttle radar topography mission data. Geophys. Res. Lett., 30(9), 1467.

    Article  Google Scholar 

  • Bjerhammar, A. and L. Svensson (1983). On the geodetic boundary-value problem for a fixed boundary surface – satellite approach. Bull. Géod., 57, 382–393.

    Article  Google Scholar 

  • Brebbia, C.A., J.C.F. Telles, and L.C. Wrobel (1984). Boundary element techniques, theory and applications in engineering. Springer-Verlag, New York.

    Book  Google Scholar 

  • Čunderlík, R., K. Mikula, and M. Mojzeš (2008). Numerical solution of the linearized fixed gravimetric boundary-value problem. J. Geod., 82, 15–29.

    Article  Google Scholar 

  • Fašková, Z., R. Čunderlík, J. Janák, K. Mikula, and M. Šprlák (2007). Gravimetric quasigeoid in Slovakia by the finite element method. Kybernetika, 43/6, 789–796.

    Google Scholar 

  • Grafarend, E.W. (1989). The geoid and the gravimetric boundary-value problem. Rep 18 Dept Geod, The Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Klees, R., M. Van Gelderen, C. Lage, and C. Schwab (2001). Fast numerical solution of the linearized Molodensky problem. J. Geod., 75, 349–362.

    Article  Google Scholar 

  • Koch, K.R. and A.J. Pope (1972). Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull. Géod., 46, 467–476.

    Article  Google Scholar 

  • Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson (1998). EGM-96 – The Development of the NASA GSFC and NIMA Joint Geopotential Model.

    Google Scholar 

  • NASA Technical Report TP-1998-206861NIMA (2001) Department of Defense World Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems, 3rd Edition, National Geospatial-Intelligence Agency. Technical Report TR8350.2.

    Google Scholar 

  • Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2008). An Earth Gravitational Model to Degree 2160: EGM2008, presented at the 2008 General Assembly of EGU, Vienna, Austria, April 13–18, 2008.

    Google Scholar 

  • Schatz, A.H., V. Thomée, and W.L. Wendland (1990). Mathematical theory of finite and boundary element methods. Birkhäuser Verlag, Basel,⋅Boston,⋅Berlin.

    Google Scholar 

  • Šprlák, M. and J. Janák (2006). Gravity field modeling. New program for gravity field modeling by spherical harmonic functions, GaKO, 1, 1–8.

    Google Scholar 

Download references

Acknowledgements

Authors gratefully thank to the financial support given by grants: VEGA 1/3321/06, APVV-LPP-216-06 and APVV-0351-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Čunderlík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Čunderlík, R., Mikula, K. (2010). On High-Resolution Global Gravity Field Modelling by Direct BEM Using DNSC08. In: Mertikas, S. (eds) Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_62

Download citation

Publish with us

Policies and ethics