Skip to main content

Alternative Nachweisverfahren – nicht PCR-basierende Schnellmethoden

  • Chapter
  • First Online:
Molekularbiologische Methoden in der Lebensmittelanalytik
  • 7368 Accesses

Zusammenfassung

Die Erfolge moderner mikrobiologischer Schnellmethoden stellen Sensitivität und Spezifität vieler konventioneller mikrobiologischer Kultivierungsmethoden in Frage. Konventionell ermittelte Keimzahlen und -gruppen pro Untersuchungseinheit scheinen mehr oder weniger unter den realen Gegebenheiten zu liegen. Andererseits schreibt beispielsweise die EU-weit geltende Verordnung (EG) Nr. 2073/2005 über mikrobiologische Kriterien für Lebensmittel den Einsatz einiger dieser Nachweismethoden verbindlich vor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer KH (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol. 178: 3496–3500.

    CAS  Google Scholar 

  • Aminul Islam M, Heuvelink AE, Talukder KA, de Boer E (2006) Immunoconcentration of Shiga toxin-producing Escherichia coli O157 from animal faeces and raw meats by using Dynabeads anti-E. coli O157 and the VIDAS system. Int J Food Microbiol. 109: 151–156.

    Article  CAS  Google Scholar 

  • Amman R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 59: 143–169.

    Google Scholar 

  • Arnold RJ, Karty JA, Ellington AD, Reilly JP (1999) Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal Chem. 71: 1990–1996.

    Article  CAS  Google Scholar 

  • Assuncao P, Rosales RS, Antunes NT, de la Fe C, Poveda JB (2007) Applications of flow cytometry to mycoplasmology. Front Biosci. 12: 664–672.

    Article  CAS  Google Scholar 

  • Augustin JC, Carlier V (2006) Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts. Food Microbiol. 23: 1–38.

    Article  Google Scholar 

  • Barer MR, Harwood CR (1999) Bacterial viability and culturability. Adv Microb Physiol. 41: 93–137.

    Article  CAS  Google Scholar 

  • Baro JA, Roldan P, Carleos CE, Grillo GJ, Perez MA (2005) Video microscopy as an alternative method for somatic cell count in milk. J Dairy Res. 72: 93–100.

    Article  CAS  Google Scholar 

  • Baumgart J (1996) Schnellmethoden und Automatisierung in der Lebensmittelmikrobiologie. Fleischwirtsch. 76: 124–130.

    CAS  Google Scholar 

  • Baumgart J, Meierjohann K (1994) Oberflächenkeimgehalt von Frischfleisch, Schnellnachweis durch ATP-Bestimmung mit einem neuen Test-Kit. Fleischwirtsch. 74: 1324.

    Google Scholar 

  • Becker B, Fechler J, Holzapfel WH (2001) Schnellnachweis zum Hygiene-Monitoring durch das Messen von Proteinrückständen auf Oberflächen. Symposium „Schnellmethoden und Automatisierung in der Lebensmittel-Mikrobiologie“, Lemgo, Fachhochschule Lippe 04.–06.07.2001, 84.

    Google Scholar 

  • Becker B, Sabrowski A, Lohneis M, Murphy J (2002) Einsatz der VIT Gensondentechnologie zum schnellen Nachweis von Listeria monocytogenes in vakuumverpacktem Räucherlachs. DVG 43. Arbeitstagung des Arbeitsgebietes Lebensmittelhygiene, Garmisch-Partenkirchen, 621–625.

    Google Scholar 

  • Becker H, Märtlbauer E (2002) Conventional and commercially-available alternative methods in food microbiology for the detection of selected pathogens and toxins. Biotest Bulletin. 6: 265–320.

    CAS  Google Scholar 

  • Benoit PW, Donahue DW (2003) Methods for rapid separation and concentration of bacteria in food that bypass time-consuming cultural enrichment. J Food Prot. 66: 1935–1948.

    Google Scholar 

  • Berry ED, Siragusa GR (1997) Hydroxyapatite adherence as a means to concentrate bacteria. Appl Environ Microbiol. 63: 4069–4074.

    CAS  Google Scholar 

  • Bonaparte C, Ahlfeld B, Klein G (2007) Quantitative Bestimmung von Bakterien in probiotischen Milcherzeugnissen mittels Durchflusszytometrie. Symposium Schnellmethoden und Automatisierung in der Lebensmittel-Mikrobiologie, Lemgo 27.–29.06.2007.

    Google Scholar 

  • Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol. 73: 485–494.

    Article  CAS  Google Scholar 

  • Brunser O, Gotteland M, Cruchet S, Figueroa G, Garrido D, Steenhout P (2006) Effect of a milk formula with prebiotics on the intestinal microbiota of infants after an antibiotic treatment. Pediatr Res. 59: 451–456.

    Article  Google Scholar 

  • Bunka DHJ, Stockley PG (2006) Aptamer coming of age – at last. Nature Rev. 4: 588–596.

    Article  CAS  Google Scholar 

  • Bunthof CJ, Van Den Braak S, Breeuwer P, Rombouts FM, Abee T (1999) Rapid Fluorescence Assessment of the viability of stressed Lactococcus lactis. Appl Environm Microbiol. 65: 3681–3689.

    CAS  Google Scholar 

  • Burgula Y, Khali D, Kim S, Krishnan SS, Cousin MA, Gore JP, Reuhs BL, Mauer LJ (2006) Detection of Escherichia coli O157: H7 and Salmonella Typhimurium using filtration followed by Fourier-transform infrared spectroscopy. J Food Prot. 69: 1777–1778.

    CAS  Google Scholar 

  • Chaney D, Rodriguez S, Fugelsang K, Thornton R (2006) Managing high-density commercial scale wine fermentations. J Appl Microbiol. 100: 689–698.

    Article  CAS  Google Scholar 

  • Chang KS, Jang HD, Lee CF, Lee YG, Yuan CJ, Lee SH (2006) Series quartz crystal sensor for remote bacteria population monitoring in raw milk via the Internet. Biosens Bioelectron. 21: 1581–1590.

    Article  CAS  Google Scholar 

  • Chen WT, Hendrickson RL, Huang CP, Sherman D, Geng T, Bhunia AK, Ladisch MR (2005) Mechanistic study of membrane concentration and recovery of Listeria monocytogenes. Biotechnol Bioeng. 89: 263–273.

    Article  CAS  Google Scholar 

  • Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, Kirschner C, Naumann D (2001) Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol. 67: 1461–1469.

    Article  CAS  Google Scholar 

  • Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 14: 1584–1586.

    Article  CAS  Google Scholar 

  • Cook N (2003) The use of NASBA for the detection of microbial pathogens in food and environmental samples. J Microbiol Meth. 53: 165–174.

    Article  CAS  Google Scholar 

  • Corbitt AJ, Bennion N, Forsythe SJ (2000) Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry. Lett Appl Microbiol. 30: 443–447.

    Article  CAS  Google Scholar 

  • Corry JE, Jarvis B, Passmore S, Hedges A (2007) A critical review of measurement uncertainty in the enumeration of food micro-organisms. Food Microbiol. 24: 230–253.

    Article  Google Scholar 

  • Dahms S, Hildebrandt G (1998) Some remarks on the design of three-class sampling plans. J Food Prot. 61: 757–761.

    CAS  Google Scholar 

  • Daley EF, Bootsveld D, Warburton DW, Farber JM (1999) A comparison of the Health Protection Branch and the enzyme linked fluorescent assay methods for the isolation and identification of Listeria spp. and Listeria monocytogenes from foods. J Rapid Meth Autom Microbiol. 7: 183–192.

    Google Scholar 

  • Dawkins GS, Hollingsworth JB, Hamilton MA (2005) Incidences of problematic organisms on petrifilm aerobic count plates used to enumerate selected meat and dairy products. J Food Prot. 68: 1506–1511.

    CAS  Google Scholar 

  • De Boer E, Beumer RR (1999) Methodology for detection and typing of foodborne microorganisms. Int J Food Microbiol. 50: 119–130.

    Article  Google Scholar 

  • De Sousa GB, Tamagnini LM, Gonzalez RD, Budde CE (2005) Evaluation of Petrifilm method for enumerating aerobic bacteria in Crottin goat cheese. Rev Argent Microbiol. 37: 214–216.

    Google Scholar 

  • Deibl J, Paulsen P, Baur F (1998) Die direkte Epifluoreszenz Filtertechnik als Methode der raschen Ermittlung der Gesamtkeimzahl in Fleisch und Fleischwaren. Wiener Tierärztl Monatsschr. 85: 327–333.

    Google Scholar 

  • D’Haese E, Nelis HJ (2002) Rapid detection of single cell bacteria as a novel approach in food microbiology. J AOAC Int. 85: 979–983.

    Google Scholar 

  • DIN-Norm Entwurf 10115 (1998) Grundlagen des Nachweises und der Bestimmung von Mikroorganismen mittels Impedanzverfahren. Deutsches Institut für Normung, Beuth Verlag, Berlin.

    Google Scholar 

  • Drømtorp SM, Nissen H, (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5 ¢ -nuclease PCR. BioTechniques. 34: 804–813.

    Google Scholar 

  • Easterling ML, Colangelo CM, Scott RA, Amster IJ (1998) Monitoring protein expression in whole bacterial cells with MALDI time-of-flight mass spectrometry. Anal Chem. 70: 2704–2709.

    Article  CAS  Google Scholar 

  • Ellerbroek L, Lox C (2004) The use of neck skin for microbial process control of fresh poultry meat using the bioluminescence method. Dtsch Tierarztl Wochenschr. 111: 181–184.

    CAS  Google Scholar 

  • Ercolini D, Storia A, Villani F, Mauriello G (2006a) Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J Appl Microbiol. 100: 765–772.

    Article  CAS  Google Scholar 

  • Ercolini D, Villani F, Aponte M, Mauriello G (2006b) Fluorescence in situ hybridisation detection of Lactobacillus plantarum group on olives to be used in natural fermentations. Int J Food Microbiol. 112: 291–296.

    Article  CAS  Google Scholar 

  • Essendoubi M, Toubas D, Bouzaggou M, Pinon JM, Manfait M, Sockalingum GD (2005) Rapid identification of Candida species by FT-IR microspectroscopy. Biochem Biophys Acta. 1724: 239–247.

    CAS  Google Scholar 

  • Feldsine PT, Lienau AH, Roa NH, Green ST (2005) Enumeration of total coliforms and E. coli in foods by the SimPlate coliform and E. coli color indicator method and conventional culture methods: collaborative study. J AOAC Int. 88: 1318–1333.

    CAS  Google Scholar 

  • Fernandez-Astorga A, Hijarrubia MJ, Lazaro B, Barcina I (1996) Effect of the pre-treatments for milk samples filtration on direct viable cell counts. J Appl Bacteriol. 80: 511–516.

    CAS  Google Scholar 

  • Firstenberg-Eden R, Shelef LA (2000) A new rapid automated method for the detection of Listeria from environmental swabs and sponges. Int J Food Micro. 56: 231–237.

    Article  CAS  Google Scholar 

  • Fukuda S, Tatsumi H, Igimi S, Yamamoto S (2005) Improved bioluminescent enzyme immunoassay for the rapid detection of Salmonella in chicken meat samples. Lett in Appl Microbiol. 41: 379–384.

    Article  CAS  Google Scholar 

  • Gabig-Ciminska M, Andresen H, Albers J, Hintsche R, Enfors SO (2004) Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip. Microb Cell Fact. 3: 2.

    Article  Google Scholar 

  • Gfeller KY, Nugaeva N, Hegner M (2005) Rapid biosensor for detection of antibiotic-selctive growth of Escherichia coli. Appl Environ Microbiol. 71: 2626–2631.

    Article  CAS  Google Scholar 

  • Grant MA, Wernberg JS, Van KT, Albert AM (2006) Two rapid methods for detection of Escherichia coli exceeding 10(4)/g action levels: precollaborative study. J AOAC Int. 89: 1317–1326.

    CAS  Google Scholar 

  • Griffiths MW (1996) The role of ATP bioluminescence in the food industry: new light on old problems. J Food Technol. 31: 62–72.

    Google Scholar 

  • Gunasekera TS, Veal DA, Attfield PV (2003) Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk. Int J Food Microbiol. 85: 269–279.

    Article  CAS  Google Scholar 

  • Gurtler JB, Beuchat LR (2005) Performance of media for recovering stressed cells of Enterobacter sakazakii as determined using spiral plating and ecometric techniques. Appl Environ Microbiol. 71: 7661–7669.

    CAS  Google Scholar 

  • Haidinger W, Szostak MP, Jechlinger W, Lubitz W (2003) Online monitoring of Escherichia coli ghost production. Appl Environ Microbiol. 69: 468–474.

    Article  CAS  Google Scholar 

  • Hain T, Barbudde S, Maier T, Schwarz G, Kostrzewa M, Chakraborty T (2007) Rapid identification of Listeria species using the MALDI Bio Typer. Symposium Schnellmethoden und Automatisierung in der Lebensmittel-Mikrobiologie, Lemgo 27.–29.06.2007.

    Google Scholar 

  • Hara-Kudo Y, Konishi N, Ohtsuka K, Hiramatsu R, Tanaka H, Konuma H, Takatori K (2008) Detection of verotoxigenic Escherichia coli O157 and O26 in food by plating methods and LAMP method: A collaborative study. Int. J. Food Microbiol. Feb 29;122(1-2):156–61.

    Google Scholar 

  • Heiligenthal A (1995) Überprüfung der Effizienz von Reinigung und Desinfektion in einem Fleischgewinnungsbetrieb. Diss med vet. FU Berlin.

    Google Scholar 

  • Holland RD, Duffy CR, Rafii F, Sutherland JB, Heinze TM, Holder CL, Voorhees KJ, Lay JO Jr (1999) Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Anal Chem. 71: 3226–3230.

    Article  CAS  Google Scholar 

  • Holm C, Jespersen L (2003) A flow-cytometric gram-staining technique for milk-associated bacteria. Appl Environ Microbiol. 69: 2857–2863.

    Article  CAS  Google Scholar 

  • Holm C, Mathiasen T, Jespersen L (2004) A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk. J Appl Microbiol. 97: 935–941.

    Article  CAS  Google Scholar 

  • Horman A, Hanninen ML (2006) Evaluation of the lactose Tergitol-7, m-Endo LES, Colilert 18, Readycult Coliforms 100, Water-Check-100, 3 M Petrifilm EC and DryCult Coliform test methods for detection of total coliforms and Escherichia coli in water samples. Water Res. 40: 3249–3256.

    Article  CAS  Google Scholar 

  • Huber I (2007) Einsatz der Biochip-Technologie in der Lebensmittelkontrolle. Symposium Schnellmethoden und Automatisierung in der Lebensmittel-Mikrobiologie, Lemgo 27.–29.06.2007.

    Google Scholar 

  • Huhtamella S, Leinonen M, Nieminen T, Fahnert B, Myllykoski L, Breitenstein A, Neubauer P (2007) RNA-based sandwich hybridisation method for detection of lactic acid bacteria in brewery samples. J Microbiol Meth. 68: 543–553.

    Article  CAS  Google Scholar 

  • Jaksch P (1991) Grundlagen der Impedanztechnik und Erfahrungen bei der Untersuchung roher und pasteurisierter Milch. dmz Lebensmitttelind Milchwirtsch. 112: 950–960.

    Google Scholar 

  • Johnson PE, Lund ML, Shorthill RW, Swanson JE, Kellogg JL (2001) Real time biodetection of individual pathogenic microorganisms in food and water. Biomed Sci Instrum. 37: 191–196.

    CAS  Google Scholar 

  • Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek J Microbiol Serol. 73: 169–187.

    Article  CAS  Google Scholar 

  • Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE, Pfyffer GE (2001) Application of the Sherlock Mycobacteria Identification System using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol. 39: 964–970.

    Article  CAS  Google Scholar 

  • Kennedy JF, Barker SA, Humphreys JD (1976) Microbial cells living immobilized on metal hydroxides. Nature. 261: 242–244.

    Article  CAS  Google Scholar 

  • Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse H, Malek L, Sooknanan R, Lens P (1991) NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Meth. 35(3): 273–286.

    Article  CAS  Google Scholar 

  • King GW, Kath GS, Siciliano S, Simpson N, Masurekar P, Sigmund J, Polishook J, Skwish S, Bills G, Genilloud O, Pelaez F, Martin J, Dufresne C (2006) Automated agar plate streaker: a linear plater on Society for Biomolecular Sciences standard plates. J Biomol Screen. 11: 704–711.

    Article  Google Scholar 

  • Kirkwood J, Ghetler A, Sedman J, Leclair D, Pagotto F, Austin JW, Ismail AA (2006) Differentiation of group I and group II strains of Clostridium botulinum by focal plane array Fourier transform infrared spectroscopy. J Food Prot. 69: 2377–2383.

    Google Scholar 

  • Krishnamurthy T, Ross PL, Rajamani U (1996) Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 10: 883–888.

    Article  CAS  Google Scholar 

  • Krumbholz L, Pichner R, Albert T, Weber H, Gareis M (2003) Nachweis von Listeria spp. mitttels fluoreszenzmarkierter Gensonden. Mitteilungsblatt BAFF. 42(161): 191–195.

    Google Scholar 

  • Kusunoki H, Bari ML, Kita T, Sugii S, Uemura T (2000) Flow cytometry for the detection of enterohaemorrhagic Escherichia coli O157: H7 with latex beads sensitized with specific antibody. J Vet Med B Infect Dis Vet Public Health. 47: 551–559.

    CAS  Google Scholar 

  • Kutter S, Hartmann A, Schmid M (2006) Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp. FEMS Microbiol Ecol. 56: 262–271.

    Article  CAS  Google Scholar 

  • Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ (2007) The array biosensor: portable, automated systems. Anal Sci. 23: 5–10.

    Article  Google Scholar 

  • Lucore LA, Cullison MA, Jaykus LA (2000) Immobilization with metal hydroxides as a means to concentrate food-borne bacteria for detection by cultural and molecular methods. Appl Environ Microbiol. 66: 1769–1776.

    Article  CAS  Google Scholar 

  • Mahler C (2007) Vorstellung einer automatisierten Keimzahlbestimmung in Lebensmitteln tierischen Ursprungs basierend auf dem MPN-Verfahren. Symposium Schnellmethoden und Automatisierung in der Lebensmittel-Mikrobiologie, Lemgo 27.–29.06.2007.

    Google Scholar 

  • Mahler C, Stolle A (2006) Automatisierte Keimzahlbestimmung. Fleischwirtsch. 86(6): 98–100.

    Google Scholar 

  • Malacrino P, Zapparoli G, Torriani S, Dellaglio F (2001) Rapid detection of viable yeasts and bacteria in wine by flow cytometry. J Microbiol Meth. 45: 127–134.

    Article  CAS  Google Scholar 

  • Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK (2005) Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Appl Environ Microbiol. 71: 6292–6307.

    Article  CAS  Google Scholar 

  • Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stammler M, Endtz HP, Bruining HA (2003) Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol. 41: 324–329.

    Article  CAS  Google Scholar 

  • Miettinen H, Aarnisalo K, Salo S, Sjoberg AM (2001) Evaluation of surface contamination and the presence of Listeria monocytogenes in fish processing factories. J Food Prot. 64: 635–639.

    CAS  Google Scholar 

  • Moje M, Hechelmann H (1995) Biolumineszenz-Schnellmethode: eine Möglichkeit zur Überprüfung von Reinigungs- und Desinfektionsmaßnahmen? Mitteilungsblätter der Bundesanstalt für Fleischforschung, Kulmbach. 34: 193–198.

    Google Scholar 

  • Moore G, Griffith C (2002) A comparison of traditional and recently developed methods for monitoring surface hygiene within the food industry: an industry trial. Int J Environ Health Res. 12: 317–329.

    Article  CAS  Google Scholar 

  • Moore JE, Madden RH (2002) Impediometric detection of Campylobacter coli. J Food Prot. 65: 1660–1662.

    Google Scholar 

  • Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Meth. 41: 85–112.

    Article  CAS  Google Scholar 

  • Muramatsu YT, Yanase T, Okabayashi H, Morita C (1997) Detection of Coxiella burnetti in cow’s milk by PCR-enzyme-linked immunosorbent assay combined with a novel sample preparation method. Appl Environ Microbiol. 63: 2142–2146.

    CAS  Google Scholar 

  • Noble PA, Ashton E, Davidson CA, Albritton WL (1991) Heterotrophic plate counts of surface water samples by usning impedance methods. App Environ Microbiol. 57: 3287–3291.

    CAS  Google Scholar 

  • Noordman WH, Reissbrodt R, Bongers RS, Rademaker JLW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol. 101: 637–646.

    Article  CAS  Google Scholar 

  • Nordstrom JL, Rangdale R, Vickery MC, Phillips AM, Murray SL, Wagley S, DePaola A (2006) Evaluation of an alkaline phosphatase-labeled oligonucleotide probe for the detection and enumeration of the thermostable-related hemolysin (trh) gene of Vibrio parahaemolyticus. J Food Prot. 69: 2770–2772.

    CAS  Google Scholar 

  • Notermans S, Wernars K (1991) Immunological methods for detection of foodborne pathogens and their toxins. Int J Food Microbiol. 12: 91–102.

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucl Acids Res. 28(12): E63.

    Article  Google Scholar 

  • Odumeru JA, Belvedere J (2002) Evaluation of the MicroFoss system for enumeration of total viable count, Escherichia coli and coliforms in ground beef. J Microbiol Meth. 50: 33–38.

    Article  Google Scholar 

  • Orsini F, Ami D, Villa AM, Sala G, Bellotti MG, Doglia SM (2000) FT-IR microspectroscopy for microbiological studies. J Microbiol Meth. 42: 17–27.

    Article  CAS  Google Scholar 

  • Payne MJ, Campbell S, Patchett RA, Kroll RG (1992) The use of immobilized lectins in the separation of Staphylococcus aureus, Escherichia coli, Listeria and Salmonella spp. from pure cultures and foods. J Appl Bacteriol. 73: 41–52.

    CAS  Google Scholar 

  • Pedersen LH, Skouboe P, Rossen L, Rasmussen OF (1998) Separation of Listeria monocytogenes and Salmonella berta from a complex food matrix by aqueous polymer two-phase partitioning. Lett Appl Microbiol. 26: 47–50.

    Article  CAS  Google Scholar 

  • Pettipher GL, Kroll RG, Farr LJ, Beetz RP (1989) DEFT: Recent developments for foods and beverages. In: Rapid microbiological methods for foods, beverages and pharmaceuticals. Hrsg. Stannard CJ, Petite SB, Skinner Fa, Blackwell Sci Publ., Oxford, 33–45.

    Google Scholar 

  • Poggemann HM, Baumgart J (1996) Hygienemonitoring durch ATP-Bestimmung mit dem System HY-LiTE. Fleischwirtsch. 76: 132–133.

    CAS  Google Scholar 

  • Poulsen LK, Ballard G, Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 59: 1354–1360.

    CAS  Google Scholar 

  • Power CA, McEwen SA, Johnson RP, Shoukri MM, Rahn K, Griffiths MW, De Grandis SA (1998) Repeatability of the Petrifilm HEC test and agreement with a hydrophobic grid membrane filtration method for the enumeration of Escherichia coli O157: H7 on beef carcasses. J Food Prot. 61: 402–408.

    CAS  Google Scholar 

  • Pyle BH, Broadaway SC, McFeters GA (1999) Sensitive Detection of Escherichia coli O157: H7 in Food and Water by Immunomagnetic Separation and Solid-Phase Laser Cytometry. Appl Environ Microbiol. 65: 1966–1972.

    CAS  Google Scholar 

  • Ramazotti-Ferrati A, Tavolaro P, Destro MT, Landgraf M, Franco BD (2005) A comparison of ready-to-use systems for evaluating the microbiological quality of acidic fruit juices using non-pasteurized orange juice as an experimental model. Int Microbiol. 8: 48–53.

    Google Scholar 

  • Reissbrodt R (2002) Improving the detection of pathogenic Gram-negative bacteria by culture of stressed and of „viable but non-culturable“ cells. Biotest Bulletin. 6: 243–251.

    Google Scholar 

  • Richter J, Becker H, Märtlbauer E (2000) Untersuchungen zur Optimierung des Salmonellennachweises in Milch und Milcherzeugnissen. Arch Lebensmittelhyg. 51: 53–56.

    CAS  Google Scholar 

  • Rider TH, Petrovick MS, Nargi FE, Harper JD, Schoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science. 301: 213–215.

    Article  CAS  Google Scholar 

  • Russel SM (2000) Comparison of the traditional three-tube most probable number method with the Petrifilm, Simplate, BioSys optical, and Bactometer conductance methods for enumerating Escherichia coli from chicken carcasses and ground beef. J Food Prot. 63: 1179–1183.

    Google Scholar 

  • Safarik I, Safarikova M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B. 722: 33–53.

    Article  CAS  Google Scholar 

  • Sandt C, Madoulet C, Kohler A, Allouch P, De Champs C, Manfait M, Sockalingum GD (2006) FT-IR microspectroscopy for early identification of some J Appl Microbiol. 101: 785–797.

    Article  CAS  Google Scholar 

  • Schalch B (2001) Optische Keimzahlbestimmung bei rohem Fleisch mit dem MicroFoss System. Fleischwirtsch. 81: 123–125.

    Google Scholar 

  • Schalch B, Alawi R, Albert T, Becker B, Busch U, Krumbholz L, Lohneis M, Sabrowski A, Stephan R, Schoen R, Zychowska MA (2005) Nachweis von Listeria monocytogenes mit dem schnellen VIT-Gensondentest. Fleischwirtsch. 85: 113–116.

    CAS  Google Scholar 

  • Schalch B, Trautsch M, Watkins I, Kau P, Stolle A (2003) Einsatz eines neuen Schnelltests zur Untersuchung der Oberflächenreinheit. Arch Lebensmittelhyg. 54: 58–60.

    Google Scholar 

  • Schemberg J, Grodrian A, Weber P, Steingroewer J, Gastrock G, Bley Th, Lemke K (2007) Schnellnachweis von Keimen mit Biomagnetischer Separation und Nanotechnologie. Symposium Schnellmethoden und Automatisierung in der Lebensmittel-Mikrobiologie, Lemgo. 27.–29.06.2007.

    Google Scholar 

  • Schmid MW, Lehner A, Stephan R, Schleifer KH, Meier H (2005) Development and application of oligonucleotide probes for in situ detection of thermotolerant Campylobacter in chicken faecal and liver samples. Int J Food Microbiol. 105: 245–255.

    Article  CAS  Google Scholar 

  • Schraft H, Watterworth LA (2005) Enumeration of heterotrophs, fecal coliforms and Escherichia coli in water: comparison of 3 M Petrifilm plates with standard plating procedures. J Microbiol Meth. 60: 335–342.

    Article  CAS  Google Scholar 

  • Schulenburg J, Bergann T (1998) Model investigations of the impedance effectiveness conerning bacterial relevant to food hygiene. Zentralbl Veterinärmed B. 45: 551–559.

    CAS  Google Scholar 

  • Sewell AM, Warburton DW, Boville A, Daley EF, Mullen K (2003) The development of an efficient and rapid enzyme linked fluorescent assay method for the detection of Listeria spp. from foods. Int J Food Microbiol. 81: 123–129.

    Article  CAS  Google Scholar 

  • Sherry AE, Patterson MF, Kilpatrick D, Madden RH (2006) Evaluation of the use of conductimetry for the rapid and precise measurement of Salmonella spp. growth rates. J Microbiol Meth. 67: 86–92.

    Article  CAS  Google Scholar 

  • Silley P, Forsythe S (1996) Impedance microbiology – a rapid change for microbiologists. J Appl Bacteriol. 80: 233–243.

    CAS  Google Scholar 

  • Siripatrawan U, Harte BR (2007) Solid phase microextraction/gas chromatography/mass spectrometry integrated with chemometrics for detection of Salmonella Typhimurium contamination in a packaged fresh vegetable. Anal Chim Acta. 581: 63–70.

    Article  CAS  Google Scholar 

  • Siripatrawan U, Linz JE, Harte BR (2006) Detection of Escherichia coli in packaged alfalfa sprouts with an electronic nose and an artificial neural network. J Food Prot. 69: 1844–1850.

    CAS  Google Scholar 

  • Smelt JP, Otten GD, Bos AP (2002) Modelling the effect of sublethal injury on the distribution of the lag times of individual cells of Lactobacillus plantarum. Int J Food Microbiol. 73: 207–212.

    Article  Google Scholar 

  • Smith CF, Townsend DE (1999) A new medium for determining the total plate count in food. J Food Prot. 62: 1404–1410.

    CAS  Google Scholar 

  • Stephan R, Schumacher S, Spahr U (2002) Evaluierung des VIT Systems als spezifischer Schnellnachweis von Listeria monocytogenes in Lebensmitteln und Umgebungsproben mittels fluoreszenzmarkierter Gensonden. DVG 43. Arbeitstagung des Arbeitgebietes Lebensmittelhygiene, Garmisch-Partenkirchen, 309–313.

    Google Scholar 

  • Stephan R, Schumacher S, Zychowska MA (2003) The VIT technology for rapid detection of Listeria monocytogenes and other Listeria spp. Int J Food Microbiol. 89: 287–290.

    Article  CAS  Google Scholar 

  • Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochem. 32: 389–394.

    Article  CAS  Google Scholar 

  • Taniwaki MH, Silva N, Banhe AA, Iamanaka BT (2001) Comparison of culture media, simplate, and petrifilm for enumeration of yeasts and molds in food. J Food Prot. 64: 1592–1596.

    CAS  Google Scholar 

  • Ukuku DO, Sapers GM, Fett WF (2005) ATP bioluminescence assay for estimation of microbial populations of fresh-cut melon. J Food Prot. 68: 2427–2432.

    CAS  Google Scholar 

  • Uyttendaele M, Schukkink R, Van Gemen B, Debevere J (1995) Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA). Appl Environ Microbiol. 61: 1341–1347.

    CAS  Google Scholar 

  • Van Der Zee H, Huis in’t Veld JH (1997) Rapid and alternative screening methods for microbiological analysis. J AOAC Int. 80: 934–940.

    CAS  Google Scholar 

  • Wadl M, Flekna G, Thompson L, Slaghuis J, Köfer J, Hein I, Wagner M (2007) Development and evaluation of a rapiod test for the direct detection of Campylobacter in chicken faeces. CHRO 2007 Rotterdam.

    Google Scholar 

  • Wagner M, Bubert A (1999) Detection of Listeria monocytogenes by commercial enzyme immunoassays. In: Encyclopedia of Food Microbiology. Hrsg. Batt CA, Patel PD. 1207–1214.

    Google Scholar 

  • Wagner M, Wolffs P, Kuhn M, Schoder D, Hoorfar J, Radström P (2003) Zur Reproduzierbarkeit von PCR-Ergebnissen. Proc. 44th Jahrestagung der Deutschen Veterinärmedizinischen Gesellschaft für Lebensmittelhygiene, Garmisch-Partenkirchen, 139–147.

    Google Scholar 

  • Wawerla M, Stolle A, Schalch B, Eisgruber H (1999) Impedance microbiology: applications in food hygiene. J Food Prot. 62: 1488–1496.

    CAS  Google Scholar 

  • Weber R, Zens W, Bülte M (1997) Kontrolle der Reinigungs- und Desinfektionsmaßnahmen im Fleischverarbeitungsbereich mit unterschiedlichen Verfahren unter besonderer Berücksichtigung des Swab`N`Check-Tests. DVG 38. Arbeitstagung des Arbeitsgebietes Lebensmittelhygiene, Garmisch-Partenkirchen, 574–578.

    Google Scholar 

  • Werlein HD (1997) Schnellnachweis der mikrobiellen Belastung von Fleisch und Schlachttierkörperoberflächen mittels der Biolumineszenztechnologie. Rdsch Fleischhyg Lebensmittelüberw. 49: 123–127.

    Google Scholar 

  • Whiting RC, Rainosek A, Buchanan RL, Miliotis M, Labarre D, Long W, Ruple A, Schaub S (2006) Determining the microbiological criteria for lot rejection from the performance objective or food safety objective. Int J Food Microbiol. 110: 263–267.

    Article  CAS  Google Scholar 

  • Wohlsen TJ, Bates G, Vesey WA, Robinson M, Katouli (2006) Evaluation of the methods for enumerating coliform bacteria from water samples using precise reference standards. Lett Appl Microbiol. 42: 350–356.

    Article  CAS  Google Scholar 

  • Yamaguchi N, Sasada M, Yamanaka M, Nasu M (2003) Rapid detection of respiring Escherichia coli O157: H7 in apple juice, milk, and ground beef by flow cytometry. Cytometry A. 54: 27–35.

    Article  Google Scholar 

  • Zschaler R (2004) Mikrobiologische Schnellmethoden. In: Schnellmethoden zur Beurteilung von Lebensmitteln und ihren Rohstoffen. Hrsg. Baltes W, Kroh LW, Behr’s Verlag, Hamburg, 3. Auflage, 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Schalch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schalch, B., Wagner, M. (2010). Alternative Nachweisverfahren – nicht PCR-basierende Schnellmethoden. In: Busch, U. (eds) Molekularbiologische Methoden in der Lebensmittelanalytik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10716-0_6

Download citation

Publish with us

Policies and ethics