Skip to main content

From Special Geometry to Black Hole Partition Functions

  • Conference paper
  • First Online:
The Attractor Mechanism

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 134))

Abstract

These notes are based on lectures given at the Erwin-Schrödinger Institute in Vienna in 2006/2007 and at the 2007 School on Attractor Mechanism in Frascati. Lecture I reviews special geometry from the superconformal point of view. Lecture II discusses the black hole attractor mechanism, the underlying variational principle and black hole partition functions. Lecture III applies the formalism introduced in the previous lectures to large and small BPS black holes in N = 4 supergravity. Lecture IV is devoted to the microscopic description of these black holes in N = 4 string compactifications. The lecture notes include problems which allow the readers to develop some of the key ideas by themselves. Appendix A reviews special geometry from the mathematical point of view. Appendix B provides the necessary background in modular forms needed for understanding S-duality and string state counting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ooguri, A. Strominger, C. Vafa, Phys. Rev. D 70, 106007 (2004). hep-th/0405146

  2. A. Strominger, C. Vafa, Phys. Lett. B 379, 99 (1998). hep-th/9601029

  3. J.M. Maldacena, A. Strominger, E. Witten, J. High Energy Phys. 12, 002 (1997). hep-th/9711053

  4. C. Vafa, Adv. Theor. Math. Phys. 2, 207 (1998). hep-th/9711067

  5. G. Lopes Cardoso, B. de Wit, T. Mohaupt, Phys. Lett. B 451, 309 (1999). hep-th/9812082

  6. G. Lopes Cardoso, B. de Wit, J. Kappeli, T. Mohaupt, J. High Energy Phys. 12, 019 (2000). hep-th/0009234

  7. R. Wald, Phys. Rev. D 48, 3427 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Sen, Black hole entropy function, attractors and precision counting of microstates. arXiv:0708.1270[hep-th]

  9. B. Pioline, Class. Quant. Grav. 23, S981 (2006). hep-th/0607227

  10. B. de Wit, Introduction to supergravity, in Supersymmetry and Supergravity ’84, ed. by B. de Wit, P. Fayet, P. van Nieuwenhuizen (World Scientific, Singapore, 1984), pp. 3–48

    Google Scholar 

  11. B. Kleijn, New couplings in N = 2 supergravity, PhD thesis, Instituut voor Theoretische Fysica, Universiteit Utrecht, 1998

    Google Scholar 

  12. T. Mohaupt, Fortschr. Phys. 49, 3 (2001). hep-th/0007195

  13. B. de Wit, A. Van Proeyen, Nucl. Phys. B 245, 89 (1984)

    Article  ADS  Google Scholar 

  14. B. de Wit, P.G. Lauwers, A. Van Proeyen, Nucl. Phys. B 255, 569 (1985)

    Article  ADS  Google Scholar 

  15. B. de Wit, Nucl. Phys. Proc. Suppl. 49, 191 (1996)

    Article  MATH  ADS  Google Scholar 

  16. B. de Wit, Fortschr. Phys. 44, 529 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Strominger, Comm. Math. Phys. 133, 163 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. L. Castellani, R. D’Auria, S. Ferrara, Class. Quant. Grav. 7, 1767 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. B. Craps, F. Roose, W. Troost, A. Van Proeyen, Nucl. Phys. B 503, 565 (1997). hep-th/9703082

  20. L. Andrianopoli et al., J. Geom. Phys. 23, 111 (1997). hep-th/9605032

  21. D.S. Freed, Commun. Math. Phys. 203, 31 (1999). hep-th/9712042

  22. D.V. Alekseevsky, V. Cortes, C. Devchand, J. Geom. Phys. 42, 85 (2002). math.dg/9910091

    Google Scholar 

  23. V. Cortes, C. Mayer, T. Mohaupt, F. Saueressig, J. High Energy Phys. 03, 028 (2004). hep-th/0312001

  24. V. Cortes, C. Mayer, T. Mohaupt, F. Saueressig, J. High Energy Phys. 06, 025 (2005). hep-th/0503094

  25. V. Cortes, T. Mohaupt, J. High Energy Phys. 07, 066 (2009). arXiv:0905.2844

  26. M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Commun. Math. Phys. 165, 311 (1994). hep-th/9309140

    Google Scholar 

  27. I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor, Nucl. Phys. B 476, 133 (1996). hep-th/9604077

  28. B. Pioline, Lect. Notes Phys. 755, 283 (2008)

    MathSciNet  ADS  Google Scholar 

  29. J. Wess, J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, 1992)

    Google Scholar 

  30. P. West, Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1986)

    Google Scholar 

  31. R. Rajaraman, Solitons and Instantons (North Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  32. G.W. Gibbons, Supersymmetric soliton states in extended supergravity theories, in Proceedings of the workshop on Unified Theories of Elementary Particles, Munich, 1982

    Google Scholar 

  33. G.W. Gibbons, C.M. Hull, Phys. Lett. B 109, 190 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  34. P.K. Townsend, M-theory from its superalgebra. hep-th/9712044

  35. K.S. Stelle, BPS branes in supergravity. hep-th/9803116

  36. S. Ferrara, R. Kallosh, A. Strominger, Phys. Rev. D 52, 5412 (1995). hep-th/9508072

  37. R. Kallosh, T. Mohaupt, M. Shmakova, J. Math. Phys. 42, 3071 (2000). hep-th/0010271

    Google Scholar 

  38. C. Mayer, T. Mohaupt, Class. Quant. Grav. 21, 1879 (2003). hep-th/0312008

    Google Scholar 

  39. F. Denef, J. High Energy Phys. 08, 050 (2000). hep-th/0005049

  40. F. Denef, G.W. Moore, Split states, entropy enigmas, holes and halos. hep-th/0702146

  41. S. Ferrara, G.W. Gibbons, R. Kallosh, Nucl. Phys. B 500, 75 (1997). hep-th/9702103

  42. P.K. Tripathy, S.P. Trivedi, J. High Energy Phys. 03, 022 (2006). hep-th/0511117

  43. K. Goldstein, N. Iizuka, R. Jena, S. Trivedi, Phys. Rev. D 72, 124021 (2005). hep-th/0507096

  44. A. Ceresole, G. Dall’Agata, J. High Energy Phys. 03, 110 (2007). hep-th/0702088

  45. G.L. Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter, J. Perz, J. High Energy Phys. 10, 063 (2007). arXiv:0706.3373

  46. J. Perz, P. Smyth, T. Van Riet, B. Vercnocke, J. High Energy Phys. 03, 150 (2009). arXiv:0810.1528

  47. L. Andrianopoli, R. D’Auria, E. Orazi, M. Trigiante. arXiv:0905.3938

  48. T. Mohaupt, K. Waite, Instantons, black holes and harmonic functions. J. High Energy Phys. 10, 058 (2009). arXiv:0906.3451

  49. S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, SAM lectures on extremal black holes in d = 4 extended supergravity. arXiv:0905.3739

  50. M. Gunaydin, Lectures on spectrum generating symmetries and U-duality in supergravity, extremal black holes, quantum attractors and harmonic superspace. arXiv:0908.0374

  51. K. Behrndt et al., Nucl. Phys. B 488, 236 (1997). hep-th/9610105

  52. G. Lopes Cardoso, B. de Wit, J. Kappeli, T. Mohaupt, J. High Energy Phys. 03, 074 (2006). hep-th/0601108

  53. G.L. Cardoso, B. de Wit, S. Mahapatra, J. High Energy Phys. 03, 085 (2007). hep-th/0612225

  54. V. Iyer, R. Wald, Phys. Rev. D 50, 846 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  55. G. Lopes Cardoso, B. de Wit, T. Mohaupt, Fortschr. Phys. 48, 49 (2000). hep-th/9904005

  56. G. Lopes Cardoso, B. de Wit, T. Mohaupt, Nucl. Phys. B 567, 87 (2000). hep-th/9906094

  57. L.J. Dixon, V. Kaplunovsky, J. Louis, Nucl. Phys. B 355, 649 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  58. V. Kaplunovsky, J. Louis, Nucl. Phys. B 422, 57 (1994). hep-th/9402005

  59. G. Lopes Cardoso, D. Lust, T. Mohaupt, Nucl. Phys. B 450, 115 (1995). hep-th/9412209

  60. A.A. Gerasimov, S.L. Shatashvili, J. High Energy Phys. 11, 074 (2004). hep-th/0409238

  61. B. de Wit, G. Lopes Cardoso, D. Lust, T. Mohaupt, S-J Rey, Nucl. Phys. B 481, 353 (1996). hep-th/9607184

  62. E.P. Verlinde, Attractors and the holomorphic anomaly. hep-th/0412139

  63. R. Dijkgraaf, S. Gukov, A. Neitzke, C. Vafa, Adv. Theor. Math. Phys. 9, 593 (2005). hep-th/0411073

  64. B. Eynard, M. Marino, A holomorphic and background independent partition function for matrix models and topological strings. arXiv:0810.4273

  65. M. Aganagic, V. Bouchard, A. Klemm, Commun. Math. Phys. 277, 771 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. M. Cvetic, D. Youm, Phys. Rev. D 53, 584 (1996). hep-th/9507090

  67. E. Bergshoeff, R. Kallosh, T. Ortin, Nucl. Phys. B 478, 156 (1996). hep-th/9605059

  68. J.A. Harvey, G.W. Moore, Phys. Rev. D 57, 2323 (1998). hep-th/9610237

  69. G. Lopes Cardoso, B. de Wit, J. Kappeli, T. Mohaupt, J. High Energy Phys. 12, 075 (2004). hep-th/0412287

  70. A. Dabholkar, R. Kallosh, A. Maloney, J. High Energy Phys. 12, 059 (2004). hep-th/0410076

  71. R. Dijkgraaf, J.M. Maldacena, G.W. Moore, E.P. Verlinde, A black hole Farey tail. hep-th/0005003

  72. A. Dabholkar, F. Denef, G.W. Moore, B. Pioline, J. High Energy Phys. 08, 021 (2005). hep-th/0502157

  73. A. Dabholkar, F. Denef, G.W. Moore, B. Pioline, J. High Energy Phys. 10, 096 (2005). hep-th/0507014

  74. R. Dijkgraaf, E.P. Verlinde, H.L. Verlinde, Nucl. Phys. B 484, 543 (1997). hep-th/9607026

  75. D. Shih, A. Strominger, X. Yin, J. High Energy Phys. 10, 087 (2006). hep-th/0505094

  76. D. Gaiotto, A. Strominger, X. Yin, J. High Energy Phys. 02, 024 (2006). hep-th/0503217

  77. D.P. Jatkar, A. Sen, J. High Energy Phys. 04, 018 (2006). hep-th/0510147

  78. J.R. David, A. Sen, J. High Energy Phys. 11, 072 (2006). hep-th/0605210

  79. M.C.N. Cheng, E. Verlinde, J. High Energy Phys. 09, 070 (2007). arXiv:0706.2363 [hep-th]

  80. M.C.N. Cheng, E. Verlinde, Wall crossing, discrete attractor flows, and Borcherds algebra. arXiv:0806.2337

  81. E. Freitag, Siegelsche Modulformen (Springer, Berlin, 1983)

    Google Scholar 

  82. D. Shih, X. Yin, J. High Energy Phys. 04, 034 (2006). hep-th/0508174

  83. D. Gaiotto, A. Strominger, X. Yin, From AdS(3)/CFT(2) to black holes / topological strings. hep-th/0602046

  84. P. Kraus, F. Larsen, Partition functions and elliptic genera from supergravity. hep-th/0607138

  85. C. Beasley et al., Why Z BH = | Z top | 2. hep-th/0608021

  86. J. de Boer, M.C.N. Cheng, R. Dijkgraaf, J. Manschot, E. Verlinde, J. High Energy Phys. 11, 024 (2006). hep-th/0608059

  87. R. Dijkgraaf, R. Gopakumar, H. Ooguri, C. Vafa, Int. J. Mod. Phys. D 15, 1581 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  88. S. Gukov, K. Saraikin, C. Vafa, Phys. Rev. D 73, 066010 (2006). hep-th/0509109

  89. G.L. Cardoso, D. Lust, J. Perz, J. High Energy Phys. 05, 028 (2006). hep-th/0603211

  90. G.L. Cardoso, V. Grass, D. Lust, J. Perz, J. High Energy Phys. 09, 078 (2006). hep-th/0607202

  91. M. Nakahara, Geometry, Topology and Physics (Adam Hilger, Bristol, NY, 1990)

    Book  MATH  Google Scholar 

  92. W. Ballmann, Lectures on Kähler Manifolds (European Mathematical Society, Zürich, 2006)

    Book  MATH  Google Scholar 

  93. D.D. Joyce, Compact Manifolds with Special Holonomy (Oxford Science, Oxford, 2000)

    MATH  Google Scholar 

  94. T. Mohaupt, Special geometry, black holes and euclidean supersymmetry, in Handbook on Pseudo-Riemannian Geometry and Supersymmetry, ed. by V. Cortés (accepted for publication)

    Google Scholar 

  95. A. Ceresole, R. D’Auria, S. Ferrara, A. Van Proeyen, Nucl. Phys. B 444, 92 (1995). hep-th/9502072

  96. B. Craps, F. Roose, W. Troost, A. Van Proeyen, Nucl. Phys. B 503, 565 (1997). hep-th/9703082

  97. D. Zagier, Introduction to modular forms, in From Number Theory to Physics ed by M. Waldschmidt, P. Moussa, J-M Luck, C. Itzykson (Springer, Berlin, 1992), pp. 283–291

    Google Scholar 

Download references

Acknowledgements

These notes are based on lectures given at the School on Attractor Mechanism 2007 in Frascati, and they make use of the material prepared for a one semester course taught at the Erwin Schrödinger Institute as part of a senior research fellowship in the academic year 2006/2007. I would like to thank Stefano Belluci for inviting me to lecture in Frascati and to publish these notes as part of the proceedings. I would also like to thank the ESI for its great hospitality during my two stays in Vienna. The participants of the lecture series in both Frascati and Vienna have helped me to shape these notes. A special thanks goes to Maximilian Kreuzer and his group for their active participation.

The material presented in these notes is to a large extent based on work done in various collaborations with Gabriel Cardoso, Vicente Cortés, Bernard de Wit, Jürg Käppeli, Christoph Mayer and Frank Saueressig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mohaupt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohaupt, T. (2010). From Special Geometry to Black Hole Partition Functions. In: Bellucci, S. (eds) The Attractor Mechanism. Springer Proceedings in Physics, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10736-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10736-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10735-1

  • Online ISBN: 978-3-642-10736-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics