Skip to main content

Abstract

Sound waves are the adequate physical stimulus for hearing organs of vertebrates and insects. Sound waves may originate from abiotic events, for example, from running water, breaking waves at beaches, movement of bushes and trees in the wind, howling storms, or thunder. Most interesting for animals, however, are sounds generated by other moving animals – rustling noises may signal the presence of prey or predator – or by special sound-producing organs of insects and vertebrates which use sounds in communication. The morphology of hearing organs is adapted to the physical properties of the sounds to be perceived. Central to all hearing organs are mechanoreceptors (see Chap. 16). In the present chapter, we deal with mechanoreceptors serving in hearing organs as the sensitive elements through which sound-induced motion is translated into activation of the central auditory systems of animals, thus providing information about the presence of sound waves in surrounding water or air. Sound waves traveling in and being picked up from solids are not considered here (see Chap. 16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashmore J (2008) Cochlear outer hair cell motility. Physiol Rev 88:173–210

    Article  PubMed  CAS  Google Scholar 

  2. Budelmann BU (1992) Hearing in nonarthopod invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 141–155

    Chapter  Google Scholar 

  3. Buser P, Imbert M (1992) Audition. MIT Press, Cambridge

    Google Scholar 

  4. Capranica RR (1976) Morphology and physiology of the auditory system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 551–575

    Chapter  Google Scholar 

  5. Carr CE, Code RA (2000) The central auditory system of reptiles and birds. In: Dooling RJ, Fay RR (eds) Comparative hearing: birds and reptiles. Springer, Berlin Heidelberg New York, pp 197–248

    Chapter  Google Scholar 

  6. Clack JA, Allin E (2004) The evolution of single- and multiple-ossicle ears in fishes and tetrapodes. In: Manley GA, Fay RR (eds) The evolution of the vertebrate auditory system. Springer, Berlin Heidelberg New York, pp 128–163

    Chapter  Google Scholar 

  7. Ehret G (1997) The auditory midbrain, a “shunting yard” of acoustical information processing. In: Ehret G, Romand R (eds) The central auditory system. Oxford Univ Press, New York, pp 259–316

    Google Scholar 

  8. Ehret G (2006) Hemisphere dominance of brain function – which functions are lateralized and why? In: van Hemmen JL, Sejnowski TJ (eds) 23 problems in systems neuroscience. Oxford Univ Press, New York, pp 44–61

    Chapter  Google Scholar 

  9. Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Assoc, Winnetka

    Google Scholar 

  10. Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla, middle ear, and auditory nuclei. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 351–375

    Chapter  Google Scholar 

  11. Fullard JH (2006) The evolution of hearing in moths: the ears of Oenosandra boisduvalii (Noctuoidea: Oenosandridae). Aust J Zool 54:51–56

    Article  Google Scholar 

  12. Greenwood DD (1990) A cochlear frequency-position function for several species – 29 years later. J Acoust Soc Am 87:2592–2605

    Article  PubMed  CAS  Google Scholar 

  13. Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  PubMed  CAS  Google Scholar 

  14. Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450

    Article  PubMed  CAS  Google Scholar 

  15. Kaas JH (2011) The evolution of auditory cortex: the core areas. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 407–427

    Chapter  Google Scholar 

  16. Kanwal JS, Ehret G (2011) Communication sounds and their cortical representation. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 343–367

    Chapter  Google Scholar 

  17. Knudsen EI, Konishi M (1978) Space and frequency are represented separately in the auditory midbrain of the owl. J Neurophysiol 41:870–884

    PubMed  CAS  Google Scholar 

  18. Konishi M, Takahashi TT, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates for sound localization in the owl. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function. The neurobiological bases of hearing. Wiley, New York, pp 721–745

    Google Scholar 

  19. Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    Article  PubMed  CAS  Google Scholar 

  20. Malmierca MS, Ryugo DK (2011) Descending connections of auditory cortex to the midbrain and brain stem. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 189–208

    Chapter  Google Scholar 

  21. Manley GA (1990) Peripheral hearing mechanisms in reptiles and birds. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  22. Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci U S A 97:11736–11743

    Article  PubMed  CAS  Google Scholar 

  23. Marshall DC, Hill KB (2009) Versatile aggressive mimicry of cicadas by an Australian predatory katydid. PLoS One 4:e4185

    Article  PubMed  Google Scholar 

  24. Mason AC, Oshinsky ML, Hoy RR (2001) Hyperacute directional hearing in a microscale auditory system. Nature 410:686–690

    Article  PubMed  CAS  Google Scholar 

  25. McCormick CA (1992) Evolution of central auditory pathways in anamniotes. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 323–350

    Chapter  Google Scholar 

  26. Miles RN, Robert D, Hoy RR (1995) Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea. J Acoust Soc Am 98:3059–3070

    Article  PubMed  CAS  Google Scholar 

  27. Nadrowski B, Effertz T, Senthilan PR, Göpfert MC (2011) Antennal hearing in insects – new findings, new questions. Hear Res 273:7–13

    Article  PubMed  Google Scholar 

  28. Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512

    Article  PubMed  CAS  Google Scholar 

  29. Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Fay RR (eds) The cochlea. Springer, Berlin Heidelberg New York, pp 186–257

    Chapter  Google Scholar 

  30. Pickles JO (2008) An introduction to the physiology of hearing, 3rd edn. Emerald, Bingley

    Google Scholar 

  31. Pollak GD (1992) Adaptations of basic structures and mechanisms in the cochlea and central auditory pathway of the mustache bat. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 751–778

    Chapter  Google Scholar 

  32. Rees A, Langer G (2005) Temporal coding in the auditory midbrain. In: Winer JA, Schreiner CE (eds) The inferior ­colliculus. Springer, Berlin Heidelberg New York, pp 346–376

    Chapter  Google Scholar 

  33. Robert D, Göpfert MC (2002) Novel schemes for hearing and acoustic orientation in insects. Curr Opin Neurobiol 12:715–720

    Article  PubMed  CAS  Google Scholar 

  34. Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    PubMed  CAS  Google Scholar 

  35. Romand R, Avan P (1997) Anatomical and functional aspects of the cochlear nucleus. In: Ehret G, Romand R (eds) The central auditory system. Oxford Univ Press, New York, pp 97–191

    Google Scholar 

  36. Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket Tettigonia viridissima. Nature 306:60–62

    Article  Google Scholar 

  37. Rosowski JJ (1994) Outer and middle ears. In: Fay RR (ed) Comparative hearing: mammals. Springer, Berlin Heidelberg New York, pp 172–247

    Chapter  Google Scholar 

  38. Rouiller EM (1997) Functional organization of the auditory pathways. In: Ehret G, Romand R (eds) The central auditory system. Oxford Univ Press, New York, pp 3–96

    Google Scholar 

  39. Scheich H, Ohl FW (2011) A semantic concept of auditory cortex function and learning. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 369–387

    Chapter  Google Scholar 

  40. Schreiner CE, Langer G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386

    Article  PubMed  CAS  Google Scholar 

  41. Scott SK (2005) Auditory processing – speech, space and auditory objects. Curr Opin Neurobiol 15:197–201

    Article  PubMed  CAS  Google Scholar 

  42. Smith CA (1981) Recent advances in structural correlates of auditory receptors. Prog Sens Physiol 2:135–187

    Article  Google Scholar 

  43. Spoendlin H (1970) Structural basis of peripheral frequency analysis. In: Plomb R, Smoorenburg GF (eds) Frequency analysis and periodicity detection in hearing. Sijhoff, Leiden, pp 2–36

    Google Scholar 

  44. Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170

    Article  PubMed  CAS  Google Scholar 

  45. Suga N (1990) Cortical computational maps for auditory imaging. Neural Netw 3:3–21

    Article  Google Scholar 

  46. Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814

    Article  PubMed  CAS  Google Scholar 

  47. Tavolga WN, Popper AN, Fay RR (eds) (1981) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Terhardt E (1998) Akustische Kommunikation. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  49. Webb JF, Fay RR, Popper AN (eds) (2008) Fish bioacoustics. Springer, Berlin Heidelberg New York

    Google Scholar 

  50. Weinberger NM (2011) Reconceptualizing the primary auditory cortex: learning, memory and specific plasticity. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 465–491

    Chapter  Google Scholar 

  51. Windmill JF, Göpfert MC, Robert D (2005) Tympanal travelling waves in migratory locusts. J Exp Biol 208:157–168

    Article  PubMed  Google Scholar 

  52. Windmill JF, Fullard JH, Robert D (2007) Mechanics of a ‘simple’ ear: tympanal vibrations in noctuid moths. J Exp Biol 210:2637–2648

    Article  PubMed  CAS  Google Scholar 

  53. Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Tech 47:380–400

    Article  PubMed  CAS  Google Scholar 

  54. Ziswiler V (1976) Die Wirbeltiere, vol 1. Thieme, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Ehret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehret, G., Göpfert, M.C. (2013). Auditory Systems. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_17

Download citation

Publish with us

Policies and ethics