Skip to main content

Abstract

Electroreception by animals living in aquatic environments is a widespread phenomenon found in many vertebrates. With ampullary electroreceptor organs or trigeminal electroreceptor structures, these animals can detect even extremely weak electric sources in their surroundings, a process called passive electrolocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bullock TH, Northcutt RG, Bodznick DA (1982) Evolution of electroreception. Trends Neurosci 5:50–53

    Article  Google Scholar 

  2. Albert J, Crampton G (2006) Electroreception and electrogenesis. In: Evans D, Claiborne J (eds) The physiology of fishes. CRC Press, Boca Raton, pp 431–472 [review]

    Google Scholar 

  3. Hopkins CD (2009) Electrical perception and communication. In: Squire L (ed) Encyclopedia of neuroscience, vol 3. Academic, Oxford, pp 813–831 [review]

    Chapter  Google Scholar 

  4. Scheich H, Langner G, Tidemann C, Coles RB, Guppy A (1986) Electroreception and electrolocation in platypus. Nature 319:401–402

    Article  PubMed  CAS  Google Scholar 

  5. Proske U, Gregory JE, Iggo A (1998) Sensory receptors in monotremes. Philos Trans R Soc Lond B Biol Sci 353:1187–1198

    Article  PubMed  CAS  Google Scholar 

  6. Pettigrew JD (1999) Electroreception in monotremes. J Exp Biol 202:1447–1454

    PubMed  CAS  Google Scholar 

  7. Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W (2011) Electroreception in the Guiana dolphin (Sotalia guianensis). Proc Biol Sci 279:663–668

    Article  PubMed  Google Scholar 

  8. Jackson CW, Hunt E, Sharkh S, Newland PL (2011) Static electric fields modify the locomotory behaviour of cockroaches. J Exp Biol 214:2020–2026

    Article  PubMed  Google Scholar 

  9. Gabel C, Gabel H, Pavlichin D, Kao A, Clark D, Samuel A (2007) Neural circuits mediate elecrosensory behaviour in Caenorhabditis elegans. J Neurosci 27:7586–7596

    Article  PubMed  CAS  Google Scholar 

  10. Gregory JE, Iggo A, McIntyre AK, Proske U (1988) Receptors in the bill of the platypus. J Physiol 400:349–366

    PubMed  CAS  Google Scholar 

  11. Bodznick D, Montgomery JC (2005) The physiology of low-frequency electrosensory systems. In: Bullock TH et al (eds) Electroreception. Springer, Berlin/Heidelberg/New York, pp 132–153

    Chapter  Google Scholar 

  12. Wilkens L, Hofmann M (2005) Behaviour of animals with passive, low-frequency electrosensory systems. In: Bullock TH et al (eds) Electroreception. Springer, Berlin/Heidelberg/New York, pp 229–263

    Chapter  Google Scholar 

  13. Kalmijn AJ (1987) Detection of weak electric fields. In: Atema J et al (eds) Social communication in aquatic environments. Springer, Berlin/Heidelberg/New York, pp 151–186

    Google Scholar 

  14. Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G (2010) Coding of stimuli by ampullary afferents in Gnathonemus petersii. J Neurophysiol 104:1955–1968

    Article  PubMed  CAS  Google Scholar 

  15. Anders KH, von During M (1984) The platypus bill. A structural and functional model of a pattern-like arrangement of cutaneous sensory receptors. In: Hamann W, Iggo A (eds) Sensory receptor mechanisms. World Scientific Publishing, Singapore, pp 81–89

    Google Scholar 

  16. Manger PR, Keast JR, Pettigrew JD, Troutt L (1998) Distribution and putative function of autonomic nerve fibres in the bill skin of the platypus (Ornithorhynchus anatinus). Phil Trans R Soc Lond 353:1159–1170

    Article  CAS  Google Scholar 

  17. Bennett MV, Wurzel M, Grundfest H (1961) The electrophysiology of electric organs of marine electric fishes: I. Properties of electroplaques of Torpedo nobiliana. J Gen Physiol 44:757–804

    Article  PubMed  CAS  Google Scholar 

  18. Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486

    Google Scholar 

  19. Caputi AA, Aguilera PA, Pereira AC (2011) Active electric imaging: body-object interplay and object’s “electric texture”. PLoS One 6:e22793 [review]

    Article  PubMed  CAS  Google Scholar 

  20. von der Emde G (2006) Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish. J Comp Physiol A 192:601–612

    Article  Google Scholar 

  21. von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C (2010) Three-dimensional scene perception during active electrolocation in a weakly electric pulse fish. Front Behav Neurosci 4:26

    PubMed  Google Scholar 

  22. Caputi AA, Budelli R, Grant K, Bell CC (1998) The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. J Exp Biol 201:2115–2128

    PubMed  CAS  Google Scholar 

  23. von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894

    Article  PubMed  Google Scholar 

  24. Caputi AA, Budelli R (2006) Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A 192:587–600

    Article  CAS  Google Scholar 

  25. von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to ­signal ­distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol A 171:683–694

    Article  Google Scholar 

  26. von der Emde G, Fetz S (2007) Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish. J Exp Biol 210:3082–3095

    Article  PubMed  Google Scholar 

  27. Heiligenberg W (1991) Neural nets in electric fish. MIT Press, Cambridge/London

    Google Scholar 

  28. Bell CC (1990) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological ­differences between two morphological types of fibers. J Neurophysiol 63:319–332

    PubMed  CAS  Google Scholar 

  29. Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K (2008) Functional foveae in an electrosensory system. J Comp Neurol 511:342–359

    Article  PubMed  Google Scholar 

  30. Szabo T, Hagiwara S (1967) A latency change mechanism involved in sensory coding of electric fish (mormyrids). Physiol Behav 2:331–335

    Article  Google Scholar 

  31. Hall C, Bell C, Zelick R (1995) Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish. J Comp Physiol A 177:29–39

    Article  Google Scholar 

  32. von der Emde G, Engelmann J (2011) Active electrolocation. In: Farrell A (ed) Encyclopedia of fish physiology: from genome to environment, vol 1. Academic, San Diego, pp 375–386 [review]

    Chapter  Google Scholar 

  33. Meek J, Grant K, Bell C (1999) Structural organization of the mormyrid electrosensory lateral line lobe. J Exp Biol 202:1291–1300

    PubMed  Google Scholar 

  34. Bell CC (1986) Electroreception in mormyrid fish. Central physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 423–451

    Google Scholar 

  35. Pusch R, von der Emde G, Hollmann M, Bacelo J, Nöbel S, Grant K, Engelmann J (2008) Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol 211:921–934

    Article  PubMed  Google Scholar 

  36. Han VZ, Bell CC, Grant K, Sugawara Y (1999) Mormyrid electrosensory lobe in vitro: morphology of cells and circuits. J Comp Neurol 404:359–374

    Article  PubMed  CAS  Google Scholar 

  37. Mohr C, Roberts PD, Bell CC (2003) The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli. J Neurophysiol 90:1193–1210

    Article  PubMed  Google Scholar 

  38. Crapse T, Sommer M (2008) Corollary discharge circuits in the primate brain. Curr Opin Neurobiol 18:552–557

    Article  PubMed  CAS  Google Scholar 

  39. Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24

    Article  PubMed  CAS  Google Scholar 

  40. Bastian J, Chacron MJ, Maler L (2004) Plastic and nonplastic pyramidal cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron 41:767–779

    Article  PubMed  CAS  Google Scholar 

  41. Sawtell NB, Williams A, Bell CC (2007) Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity. J Neurosci 27:1552–1565

    Article  PubMed  CAS  Google Scholar 

  42. Nieuwenhuys R, Nicholson C (1969) Aspects of the histology of the cerebellum of mormyrid fishes. In: Llinas RR (ed) Neurobiology of cerebellar evolution and development. American Medical Association Institute for Biomedical Research, Chicago, pp 135–169

    Google Scholar 

  43. Finger TE, Bell CC, Russell CJ (1981) Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp Brain Res 42:22–33

    Article  Google Scholar 

  44. van Essen DC, Gallant JL (1994) Neural mechanisms of form and motion processing in the primate visual system. Neuron 13:1–10

    Article  PubMed  Google Scholar 

  45. Prechtl JC, von der Emde G, Wolfart J, Karamürsel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a teleost fish, Gnathonemus petersii. J Neurosci 18:7381–7393

    PubMed  CAS  Google Scholar 

Videos

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard von der Emde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von der Emde, G. (2013). Electroreception. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_19

Download citation

Publish with us

Policies and ethics