Skip to main content

Three-dimensional echocardiography: lessons in overcoming time and space

  • Chapter
Three-dimensional Echocardiography

Abstract

A more intelligible display of complex cardiac pathology and the need for more accurate left ventricular (LV) function assessment prompted investigators to develop three-dimensional (3D) echocardiography immediately after the introduction of two-dimensional (2D) echocardiography in the early 1970s. Indeed, the objective display of cardiac structures in their correct relationship to each other and avoiding assumptions about LV cavity geometry would greatly improve diagnostic accuracy. Several directions have been followed, but 3D echocardiography has followed two merging lines of development. One line is trying to make ultrasound systems work faster and faster, despite the limitations imposed by the fixed velocity of ultrasound in tissue. The second technical line is the attempt to provide meaningful images of the data acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dekker DL, Piziali RL, Dong E Jr (1974) A system for ultrasonically imaging the human heart in three dimensions. Comput Biomed Res7:544–553

    Article  PubMed  CAS  Google Scholar 

  2. Moritz WE, Shreve PL (1976) A microprocessor based spatial locating system for use with diagnostic ultrasound. Proc IEEE 64:966–974

    Article  Google Scholar 

  3. Frangi AF, Niessen WJ, Viergever MA (2001) Three-dimensional modelling for functional analysis of cardiac images: a review. IEEE Trans Med Imaging 20: 2–5

    Article  PubMed  CAS  Google Scholar 

  4. Raab FH, Blood EB, Steiner TO, Jones HR (1979) Magnetic position and orientation tracking system. IEEE Trans Aerospace Electron Systems 15:709–718

    Article  Google Scholar 

  5. King DL, King DL Jr, Shao MYC (1990) Three-dimensional spatial registration and interactive display of position and orientation of real-time ultrasound images. J Ultrasound Med 9:525–532

    PubMed  CAS  Google Scholar 

  6. Gopal AS, King DL, Katz J, Boxt LM, King DL Jr, Shao MYC (1992) Three-dimensional echocardiographic volume computation by polyhedral surface reconstruction: in vitro validation and comparison to magnetic resonance imaging. J Am Soc Echocardiogr 5:115–124

    PubMed  CAS  Google Scholar 

  7. King DL, Harrison MR, King DL Jr, Gopal AS, Martin RP, DeMaria AN (1992) Improved reproducibility of left atrial and left ventricular measurements by guided three-dimensional echocardiography. J Am Coll Cardiol 20:1238–1245

    Article  PubMed  CAS  Google Scholar 

  8. Gopal AS, Keller AM, Rigling R, King DL Jr, King DL (1993) Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol 22:258–270

    Article  PubMed  CAS  Google Scholar 

  9. Handschumacher MD, Lethor JP, Siu SC, Mele D, Rivera JM, Picard MH, Weyman AE, Levine RA (1993) A new integrated system for three-dimensional echocardiographic reconstruction: development and validation for ventricular volume with application in human subjects. J Am Coll Cardiol 21:743–753

    Article  PubMed  CAS  Google Scholar 

  10. Siu SC, Rivera JM, Guerrero JL, Handschumacher MD, Lethor JP, Weyman AE, Levine RA, Picard MH (1993) Three-dimensional echocardiography. In vivo validation for left ventricular volume and function. Circulation 88:1715–1723

    PubMed  CAS  Google Scholar 

  11. Wollschläger H, Zeiher AM, Klein HP, Kasper W, Geibel A, Wollschläger S (1989) Transesophageal echo computer tomography: a new method for dynamic 3-D imaging of the heart. Circulation 80:II-569 (abstract)

    Google Scholar 

  12. Wollschläger H, Zeiher AM, Klein HP (1990) Transesophageal echo computer tomography (ECHO-CT): a new method for perspective views of the beating heart. Circulation 82(Suppl. 3):III- 670 (abstract)

    Google Scholar 

  13. Kuroda T, Kinter TM, Seward JB, Yanagi H, Greenleaf JF (1991) Accuracy of three-dimensional volume measurement using biplane transesophageal echocardiographc probe: in vitro experiment. J Am Soc Echocardiogr 4:475–484

    PubMed  CAS  Google Scholar 

  14. Roelandt JRTC, Ten Cate FJ, Vletter WB, Taams MA (1994) Ultrasonic dynamic three-dimensional visualization of the heart with a multiplane transesophageal imaging transducer. J Am Soc Echocardiogr 7:217–229

    PubMed  CAS  Google Scholar 

  15. Roelandt JRTC, Salustri A, Mumm B, Vletter WB (1995) Precordial three-dimensional echocardiography with a rotational imaging probe: methods and initial clinical experience. Echocardiography 12:243–252

    Article  PubMed  CAS  Google Scholar 

  16. Djoa KK, Jong N de, van Egmond FC, Kasprzak JD, Vletter WB, Lancee CT, van der Steen AF, Bom N, Roelandt JRTC (2000) Realtime three-dimensional data acquisition with the fast rotating scanning unit. Ultrasound Med Biol 26:863–869

    Article  PubMed  CAS  Google Scholar 

  17. Von Ramm OT, Smith SW (1990) Real-time volumetric ultrasound imaging system. J Digit Imaging 3:261–266

    Article  Google Scholar 

  18. Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graphics Application 8: 29–39

    Article  Google Scholar 

  19. Fulton DR, Marx GR, Pandian NG, Romero BA, Mumm B, Krauss M, Wollschläger H, Ludomirsky A, Cao QL (1994) Dynamic threedimensional echocardiographic imaging of congenital heart defects in infants and children by computer controlled tomographic parallel slicing using a single integrated ultrasound instrument. Echocardiography 11:155–164

    Article  PubMed  CAS  Google Scholar 

  20. Bruining N, von Birgelen C, Di Mario C, Prati F, Li W, den Heed W, Patijn M, de Feyter PJ, Serruys PW, Roelandt JRTC (1995) Dynamic three-dimensional reconstruction of ICUS images based on an ECG-gated pull-back device. Computers in Cardiology 633–636

    Google Scholar 

  21. Nixon J, Saffer SI, Lipscomb K, Blomqvist CG (1983) Threedimensional echoventriculography. Am Heart J 16:435–443

    Article  Google Scholar 

  22. Belohlavek M, Foley DA, Gerber TC, Greenleaf JF, Seward JB (1993) Three-dimensional ultrasound imaging of the atrial septum: normal and pathologic anatomy. J Am Coll Cardiol 22:1673–1678

    Article  PubMed  CAS  Google Scholar 

  23. Martin RW, Bashein G, Zimmer R, Sutherland J (1986) An endoscopic micromanipulator for multiplanar transesophageal imaging. Ultrasound Med Biol 12: 965–975

    Article  PubMed  CAS  Google Scholar 

  24. Delabays A, Pandian NG, Cao QL, Sugeng L, Marx G, Ludomirski A, Schwartz SL (1995) Transthoracic real-time three-dimensi onal echocardiography using a fan-like scanning approach for data acquisition. Echocardiography 12:49–59

    Article  PubMed  CAS  Google Scholar 

  25. Ghosh A, Nanda NC, Maurer G (1982) Three-dimensional reconstruction of echocardiographic images using the rotation method. Ultrasound Med Biol 6:655–661

    Article  Google Scholar 

  26. Machle J, Bjoernstad K, Aakhus S, Torp HG, Angelsen BA (1994) Three-dimensional echocardiography for quantitative left ventricular wall motion analysis. Echocardiography 11:397–408

    Article  Google Scholar 

  27. Buck T, Schön F, Baumgart D, Leischik R, Schappert T, Kupferwasser I, Meyer J, Görge G, Haude M, Erbel R (1996) Tomographic left ventricular volume determination in presence of aneurysm by threedimensional echocardiographic imaging. J Am Soc Echocardiogr 9:488–500

    Article  PubMed  CAS  Google Scholar 

  28. Mele D, Levine RA (2000) Quantitation of ventricular size and function: principles and accuracy of transthoracic rotational scanning. Echocardiography 17:749–755

    Article  PubMed  CAS  Google Scholar 

  29. Nanda NC, Pinheiro L, Sanyal R, Rosenthal S, Kirklin JK (1992) Multiplane transesophageal echocardiography imaging and three-dimensional reconstruction. Echocardiography 9:667– 676

    Article  Google Scholar 

  30. Roelandt JRTC, Thomson IR, Vletter WB, Brommersma P, Bom N, Linker DT (1992) Multiplane transesophageal echocardiography: latest evolution in an imaging revolution. J Am Soc Echocardiogr 5:361–367

    PubMed  CAS  Google Scholar 

  31. Papavassiliou D, Doelling NR, Bowman MK, Yeung H, Rock J, Klas B, Chung K, Fyfe DA (1998) Initial experience with an internally rotating transthoracic three-dimensional echocardiographic probe and image acquisition on a conventional echocardiogram machine. Echocardiography 15:369–376

    Article  PubMed  Google Scholar 

  32. Belohlavek M, Tanabe K, Japrapanichakul D, Breen JF, Seward JB (2001) Rapid three-dimensional echocardiography: clinically feasible alternative for precise and accurate measurement of left ventricular volumes. Circulation 103: 2882–2884

    Article  PubMed  CAS  Google Scholar 

  33. Kisslo J, von Ramm OT, Thursone FL (1976) Cardiac imaging using a phased-array ultrasound system II: Clinical technique and application. Circulation 53:262–267

    PubMed  CAS  Google Scholar 

  34. Snyder JE, Kisslo JA, von Ramm OT (1986) Real-time orhtogonal mode scanning of the heart I. System design. J Am Coll Cardiol 7:1279–1285

    Article  PubMed  CAS  Google Scholar 

  35. Kuo J, Atkins BZ, Hutcheson KA, von Ramm OT (2005) Ultrasound in Med & Biol 31:203–211

    Google Scholar 

  36. Kuo J, von Ramm OT (2008) Three-dimensional motion measurements using feature tracking. IEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55:800–810

    Article  Google Scholar 

  37. Smith SW, Light ED, Idriss SF, Wolf PD (2002) Feasibility of real-time three- dimensional intracardiac echocardiography for guidance of interventional electrophysiology. PACE 25: 351–357

    PubMed  Google Scholar 

  38. Roelandt JRTC (1998) Technical aspects: approaches, clinical procedure and display. In: Roelandt JRTC (ed) Three-dimensional echocardiography of the heart and coronary arteries. Van Zuiden Communications BV, Alphen a/d Rijn, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roelandt, J.R.T.C., Kisslo, J. (2011). Three-dimensional echocardiography: lessons in overcoming time and space. In: Buck, T., Franke, A., Monaghan, M.J. (eds) Three-dimensional Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11179-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11179-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11178-5

  • Online ISBN: 978-3-642-11179-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics