Skip to main content

Interior Point Methods for Nonlinear Optimization

  • Chapter
  • First Online:
Nonlinear Optimization

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1989))

Abstract

Interior-point methods (IPMs) are among the most efficient methods for solving linear, and also wide classes of other convex optimization problems. Since the path-breaking work of Karmarkar [48], much research was invested in IPMs. Many algorithmic variants were developed for Linear Optimization (LO). The new approach forced to reconsider all aspects of optimization problems. Not only the research on algorithms and complexity issues, but implementation strategies, duality theory and research on sensitivity analysis got also a new impulse. After more than a decade of turbulent research, the IPM community reached a good understanding of the basics of IPMs. Several books were published that summarize and explore different aspects of IPMs. The seminal work of Nesterov and Nemirovski [63] provides the most general framework for polynomial IPMs for convex optimization. Den Hertog [42] gives a thorough survey of primal and dual path-following IPMs for linear and structured convex optimization problems. Jansen [45] discusses primal-dual target following algorithms for linear optimization and complementarity problems.Wright [93] also concentrates on primal-dual IPMs, with special attention on infeasible IPMs, numerical issues and local, asymptotic convergence properties. The volume [80] contains 13 survey papers that cover almost all aspects of IPMs, their extensions and some applications. The book of Ye [96] is a rich source of polynomial IPMs not only for LO, but for convex optimization problems as well. It extends the IPM theory to derive bounds and approximations for classes of nonconvex optimization problems as well. Finally, Roos, Terlaky and Vial [72] present a thorough treatment of the IPM based theory - duality, complexity, sensitivity analysis - and wide classes of IPMs for LO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh. Combinatorial optimization with interior point methods and semi-definite matrices, Ph.D. thesis, University of Minnesota, Minneapolis, USA, 1991.

    Google Scholar 

  2. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM Journal on Optimization, 5(1),13–51, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Alizadeh and D. Goldfarb. Second-order cone programming, Mathematical Programming, Series B, 95,3–51, 2002.

    Article  MathSciNet  Google Scholar 

  4. F. Alizadeh and S. H. Schmieta. Symmetric cones, potential reduction methods, In H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, chapter 8, pages 195–233. Kluwer Academic Publishers, 2000.

    Google Scholar 

  5. E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior point methods for large scale linear programming, In T. Terlaky, editor, Interior Point Methods of Mathematical Programming, pages 189–252. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

    Google Scholar 

  6. E. D. Andersen, B. Jensen, R. Sandvik, and U. Worsøe. The improvements in MOSEK version 5., Technical report 1-2007, MOSEK ApS, Fruebjergvej 3 Box 16, 2100 Copenhagen, Denmark, 2007.

    Google Scholar 

  7. E. D. Andersen and Y. Ye. A computational study of the homogeneous algorithm for large-scale convex optimization, Computational Optimization and Applications, 10(3), 243–280, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity problem, Mathematical Programming, Series A, 84(2),375–399, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Anstreicher. Large step volumetric potential reduction algorithms for linear programming, Annals of Operations Research, 62, 521–538, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Anstreicher. Volumetric path following algorithms for linear programming, Mathematical Programming, 76, 245–263, 1997.

    MathSciNet  MATH  Google Scholar 

  11. A. Ben-Tal and A. Nemirovski Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, MPS-SIAM Series on Optimization. SIAM, Philadelphia, PA, 2001.

    Google Scholar 

  12. R. E. Bixby. Solving real-world linear programs: A decade and more of progress, Operations Research, 50(1), 3–15, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Borchers and J. G. Young. Implementation of a primal-dual method for SDP on a shared memory parallel architecture, Computational Optimization and Applications, 37(3), 355–369, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Byrd, J. Nocedal, and R. Waltz. KNITRO: An integrated package for nonlinear optimization, In G. Di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, volume 83 of Nonconvex Optimization and Its Applications. Springer, 2006.

    Google Scholar 

  15. M. Colombo and J. Gondzio. Further development of multiple centrality correctors for interior point methods, Computational Optimization and Applications, 41(3), 277–305, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Kluwer Academic Publichers, Dordrecht, The Netherlands, 2002.

    MATH  Google Scholar 

  17. E. de Klerk, C. Roos, and T. Terlaky. Semi-definite problems in truss topology optimization, Technical Report 95-128, Faculty of Technical Mathematics and Informatics, T.U. Delft, The Netherlands, 1995.

    Google Scholar 

  18. E. de Klerk, C. Roos, and T. Terlaky. Initialization in semidefinite programming via a self-dual, skew-symmetric embedding, OR Letters, 20, 213–221, 1997.

    MATH  Google Scholar 

  19. E. de Klerk, C. Roos, and T. Terlaky. Infeasible-start semidefinite programming algorithms via self-dual embeddings. In P. M. Pardalos and H. Wolkowicz, editors, Topics in Semidefinite and Interior Point Methods, volume 18 of Fields Institute Communications, pages 215–236. AMS, Providence, RI, 1998.

    Google Scholar 

  20. E. de Klerk, C. Roos, and T. Terlaky. On primal-dual path-following algorithms for semidefinite programming, In F. Gianessi, S. Komlósi, and T. Rapcsák, editors, New Trends in Mathematical Programming, pages 137–157. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

    Google Scholar 

  21. A. Deza, E. Nematollahi, and T. Terlaky. How good are interior point methods? Klee-Minty cubes tighten iteration-complexity bounds, Mathematical Programming, 113, 1–14, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Faraut and A. Korányi Analysis on Symmetric Cones, Oxford Mathematical Monographs. Oxford University Press, 1994.

    Google Scholar 

  23. A. V. Fiacco and G. P. McCormick Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, 1968. Reprint: Vol. 4. SIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia, USA, 1990.

    Google Scholar 

  24. J. Forrest, D. de le Nuez, and R. Lougee-Heimer CLP User Guide, IBM Corporation, 2004.

    Google Scholar 

  25. A. Forsgren, Ph. E. Gill, and M. H. Wright. Interior methods for nonlinear optimization, SIAM Review, 44(4), 525–597, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. M. Freund. On the behavior of the homogeneous self-dual model for conic convex optimization, Mathematical Programming, 106(3), 527–545, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Frisch. The logarithmic potential method for solving linear programming problems, Memorandum, University Institute of Economics, Oslo, Norway, 1955.

    Google Scholar 

  28. GNU Linear Programming Kit Reference Manual, Version 4.28, 2008.

    Google Scholar 

  29. M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM, 42, 1115–1145, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Goldfarb and K. Scheinberg. A product-form cholesky factorization method for handling dense columns in interior point methods for linear programming, Mathematical Programming, 99(1), 1–34, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Goldfarb and K. Scheinberg. Product-form cholesky factorization in interior point methods for second-order cone programming, Mathematical Programming, 103(1), 153–179, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. J. Goldman and A. W. Tucker. Theory of linear programming, In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related Systems, number 38 in Annals of Mathematical Studies, pages 53–97. Princeton University Press, Princeton, New Jersey, 1956.

    Google Scholar 

  33. J. Gondzio. Warm start of the primal-dual method applied in the cutting plane scheme, Mathematical Programming, 83(1), 125–143, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Gondzio and A. Grothey. Direct solution of linear systems of size 10 9 arising in optimization with interior point methods, In R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski, editors, Parallel Processing and Applied Mathematics, number 3911 in Lecture Notes in Computer Science, pages 513–525. Springer-Verlag, Berlin, 2006.

    Chapter  Google Scholar 

  35. J. Gondzio and A. Grothey. A new unblocking technique to warmstart interior point methods based on sensitivity analysis, SIAM Journal on Optimization, 3, 1184–1210, 2008.

    Article  MathSciNet  Google Scholar 

  36. J. Gondzio and T. Terlaky. A computational view of interior point methods for linear programming, In J. E. Beasley, editor, Advances in Linear and Integer Programming, pages 103–185. Oxford University Press, Oxford, 1996.

    Google Scholar 

  37. I. S. Gradshteyn and I. M. Ryzhik Tables of Integrals, Series, and Products, Academic Press, San Diego, CA, 6th edition, 2000.

    Google Scholar 

  38. M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, Web page and software, http://stanford.edu/~boyd/cvx, 2008.

  39. M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs, In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control (a tribute to M. Vidyasagar). Springer, 95–110, 2008.

    Google Scholar 

  40. M. Grötschel, L. Lovász, and A. Schrijver Geometric Algorithms and Combinatorial Optimization. Springer Verlag, 1988.

    Google Scholar 

  41. Ch. Guéret, Ch. Prins, and M. Sevaux Applications of optimization with Xpress-MP, Dash Optimization, 2002. Translated and revised by Susanne Heipcke.

    Google Scholar 

  42. D. den Hertog Interior Point Approach to Linear, Quadratic and Convex Programming, volume 277 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

    Google Scholar 

  43. T. Illés and T. Terlaky. Pivot versus interior point methods: Pros and cons, European Journal of Operational Research, 140(2), 170–190, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  44. I. D. Ivanov and E. de Klerk. Parallel implementation of a semidefinite programming solver based on CSDP in a distributed memory cluster, Optimization Methods and Software, 25(3), 405–420, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Jansen, Interior Point Techniques in Optimization. Complexity, Sensitivity and Algorithms, volume 6 of Applied Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

    Google Scholar 

  46. B. Jansen, J. J. de Jong, C. Roos, and T. Terlaky. Sensitivity analysis in linear programming: just be careful!, European Journal of Operations Research, 101(1), 15–28, 1997.

    Article  MATH  Google Scholar 

  47. B. Jansen, C. Roos, and T. Terlaky. The theory of linear programming: Skew symmetric self-dual problems and the central path, Optimization, 29, 225–233, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  48. N. K. Karmarkar. A new polynomial-time algorithm for linear programming, Combinatorica, 4, 373–395, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Kočvara and M. Stingl PENSDP Users Guide (Version 2.2), PENOPT GbR, 2006.

    Google Scholar 

  50. J. Löfberg. YALMIP: a toolbox for modeling and optimization in MATLAB, In Proceedings of the 2004 IEEE International Symposium on Computer Aided Control Systems Design, pages 284–289, 2004.

    Google Scholar 

  51. L. Lovász and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization, SIAM Journal on Optimization, 1(2), 166–190, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  52. Z.-Q. Luo, J. F. Sturm, and S. Zhang. Conic linear programming and self-dual embedding, Optimization Methods and Software, 14, 169–218, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  53. K. A. McShane, C. L. Monma, and D. F. Shanno. An implementation of a primal-dual interior point method for linear programming, ORSA Journal on Computing, 1, 70–83, 1989.

    Article  MATH  Google Scholar 

  54. N. Megiddo. Pathways to the optimal set in linear programming, In N. Megiddo, editor, Progress in Mathematical Programming: Interior Point and Related Methods, pages 131–158. Springer Verlag, New York, 1989. Identical version in: Proceedings of the 6th Mathematical Programming Symposium of Japan, Nagoya, Japan, pages 1–35, 1986.

    Google Scholar 

  55. S. Mehrotra. On the implementation of a (primal-dual) interior point method, SIAM Journal on Optimization, 2(4), 575–601, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Mehrotra and Y. Ye. On finding the optimal facet of linear programs, Mathematical Programming, 62, 497–515, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. D. C. Monteiro. Primal-dual path-following algorithms for semidefinite programming, SIAM Journal on Optimization, 7, 663–678, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  58. R. D. C. Monteiro and S. Mehrotra. A general parametric analysis approach and its implications to sensitivity analysis in interior point methods, Mathematical Programming, 72, 65–82, 1996.

    MathSciNet  MATH  Google Scholar 

  59. R. D. C. Monteiro and M. J. Todd. Path-following methods. In H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, chapter 10, pages 267–306. Kluwer Academic Publishers, 2000.

    Google Scholar 

  60. R. D. C. Monteiro and T. Tsuchiya. Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions, Mathematical Programming, 88(1), 61–83, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  61. K. Nakata, M. Yamashita, K. Fujisawa, and M. Kojima. A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion, Parallel Computing, 32, 24–43, 2006.

    Article  MathSciNet  Google Scholar 

  62. A. S. Nemirovski and M. J. Todd. Interior-point methods for optimization, Acta Numerica, 17, 191–234, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  63. Y. E. Nesterov and A. Nemirovski Interior-Point Polynomial Algorithms in Convex Programming, volume 13 of SIAM Studies in Applied Mathematics. SIAM Publications, Philadelphia, PA, 1994.

    Google Scholar 

  64. Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for convex programming, Mathematics of Operations Research, 22(1), 1–42, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  65. M. L. Overton. On minimizing the maximum eigenvalue of a symmetric matrix, SIAM Journal on Matrix Analysis and Applications, 9(2), 256–268, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  66. J. Peng, C. Roos, and T. Terlaky. New complexity analysis of the primal-dual Newton method for linear optimization, Annals of Operations Research, 99, 23–39, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Peng, C. Roos, and T. Terlaky Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms. Princeton University Press, Princeton, NJ, 2002.

    Google Scholar 

  68. L. Porkoláb and L. Khachiyan. On the complexity of semidefinite programs, Journal of Global Optimization, 10(4), 351–365, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  69. F. Potra and R. Sheng. On homogeneous interior-point algorithms for semidefinite programming, Optimization Methods and Software, 9(3), 161–184, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  70. F. Potra and Y. Ye. Interior-point methods for nonlinear complementarity problems, Journal of Optimization Theory and Applications, 68, 617–642, 1996.

    Article  MathSciNet  Google Scholar 

  71. A. U. Raghunathan and L. T. Biegler. An interior point method for mathematical programs with complementarity constraints (MPCCs), SIAM Journal on Optimization, 15(3), 720–750, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  72. C. Roos, T. Terlaky, and J.-Ph. Vial Theory and Algorithms for Linear Optimization. An Interior Approach, Springer, New York, USA, 2nd edition, 2006.

    Google Scholar 

  73. S. H. Schmieta and F. Alizadeh. Associative and Jordan algebras, and polynomial time interior-point algorithms, Mathematics of Operations Research, 26(3), 543–564, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  74. Gy. Sonnevend. An “analytic center” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, In A. Prékopa, J. Szelezsán, and B. Strazicky, editors, System Modeling and Optimization: Proceedings of the 12th IFIP-Conference held in Budapest, Hungary, September 1985, volume 84 of Lecture Notes in Control and Information Sciences, pages 866–876. Springer Verlag, Berlin, West Germany, 1986.

    Google Scholar 

  75. J. F. Sturm. Primal-dual interior point approach to semidefinite programming, In J. B. G. Frenk, C. Roos, T. Terlaky, and S. Zhang, editors, High Performance Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

    Google Scholar 

  76. J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optimization Methods and Software, 11-12, 625–653, 1999.

    Google Scholar 

  77. J. F. Sturm. Implementation of interior point methods for mixed semidefinite and second order cone optimization problems, Optimization Methods and Software, 17(6), 1105–1154, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  78. J. F. Sturm. Avoiding numerical cancellation in the interior point method for solving semidefinite programs, Mathematical Programming, 95(2), 219–247, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  79. J. F. Sturm and S. Zhang. An interior point method, based on rank-1 updates, for linear programming, Mathematical Programming, 81, 77–87, 1998.

    MathSciNet  MATH  Google Scholar 

  80. T. Terlaky, editor Interior Point Methods of Mathematical Programming, volume 5 of Applied Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

    Google Scholar 

  81. T. Terlaky. An easy way to teach interior-point methods, European Journal of Operational Research, 130(1), 1–19, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  82. M. J. Todd. A study of search directions in primal-dual interior-point methods for semidefinite programming, Optimization Methods and Software, 11, 1–46, 1999.

    Article  MathSciNet  Google Scholar 

  83. K. C. Toh, R. H. Tütüncü, and M. J. Todd. On the implementation of SDPT3 (version 3.1) – a Matlab software package for semidefinite-quadratic-linear programming, In Proceedings of the IEEE Conference on Computer-Aided Control System Design, 2004.

    Google Scholar 

  84. T. Tsuchiya. A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming, Optimization Methods and Software, 11, 141–182, 1999.

    Article  MathSciNet  Google Scholar 

  85. A. W. Tucker. Dual systems of homogeneous linear relations, In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related Systems, number 38 in Annals of Mathematical Studies, pages 3–18. Princeton University Press, Princeton, New Jersey, 1956.

    Google Scholar 

  86. R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming Series B, 95, 189–217, 2003.

    Article  MATH  Google Scholar 

  87. P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets, Mathematical Programming, 73(3), 291–341, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  88. L. Vandenberghe and S. Boyd. Semidefinite programming, SIAM Review, 38, 49–95, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  89. R. J. Vanderbei LOQO User’s Guide – Version 4.05, Princeton University, School of Engineering and Applied Science, Department of Operations Research and Financial Engineering, Princeton, New Jersey, 2006.

    Google Scholar 

  90. A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, 106(1), 25–57, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  91. H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, Kluwer Academic Publishers, 2000.

    Google Scholar 

  92. M. H. Wright. The interior-point revolution in optimization: History, recent developments, and lasting consequences, Bulletin (New Series) of the American Mathematical Society, 42(1), 39–56, 2004.

    Article  Google Scholar 

  93. S. J. Wright. Primal-Dual Interior-Point Methods, SIAM, Philadelphia, USA, 1997.

    Book  MATH  Google Scholar 

  94. X. Xu, P. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming algorithm and its implementation, Annals of Operations Research, 62, 151–172, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  95. M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0), Optimization Methods and Software, 18, 491–505, 2003.

    Google Scholar 

  96. Y. Ye Interior-Point Algorithms: Theory and Analysis, Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley and Sons, New York, 1997.

    Google Scholar 

  97. Y. Ye, M. J. Todd, and S. Mizuno. An \(O(\sqrt{n}L)\) -iteration homogeneous and self-dual linear programming algorithm, Mathematics of Operations Research, 19, 53–67, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  98. E. A. Yildirim and S. J. Wright. Warm start strategies in interior-point methods for linear programming, SIAM Journal on Optimization, 12(3), 782–810, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  99. Y. Zhang. On extending primal-dual interior-point algorithms from linear programming to semidefinite programming, SIAM Journal of Optimization, 8, 356–386, 1998.

    Article  Google Scholar 

  100. Y. Zhang. Solving large-scale linear programs by interior-point methods under the MATLAB environment, Optimization Methods Software, 10, 1–31, 1998.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Terlaky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pólik, I., Terlaky, T. (2010). Interior Point Methods for Nonlinear Optimization. In: Di Pillo, G., Schoen, F. (eds) Nonlinear Optimization. Lecture Notes in Mathematics(), vol 1989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11339-0_4

Download citation

Publish with us

Policies and ethics