Skip to main content

Radioactive Particles Released into the Environment from Nuclear Events

  • Chapter
  • First Online:
Actinide Nanoparticle Research

Abstract

A major fraction of refractory radionuclides, such as uranium (U) and plutonium (Pu) that are released during severe nuclear events including nuclear weapon tests, reactor explosions or fires, and use of depleted uranium ammunition, is present as particles, often ranging from submicrons to fragments. Reprocessing facilities and civil reactors are also sources of radioactive particles and colloids via their authorized or accidental releases. Furthermore, radioactive particles are identified in sediments in the close vicinity of radioactive waste dumped at sea. Thus, whenever refractory radionuclides are released following severe nuclear events, radioactive particles should also be expected. Substantial amounts of refractory fission products, activation products and transuranics can be carried by radioactive particles that are heterogeneously distributed in the environment. In case of radioactive particle contamination, representative sampling is difficult, and complete digestion of inert particles is a challenge. Thus, the estimated inventories can be underestimated. When radioactive particles enter the environment, weathering processes occur and, subsequently, associated radionuclides are mobilized. Therefore, particle contaminated soils or sediments can act as diffuse sources for future ecosystem transfer. In cases where significant radioactive particle releases occur, environmental impact assessment should therefore include detailed studies dedicated to provide information on particle characteristics such as size distributions, crystallographic structures, oxidation states, these being variables influencing weathering, mobility, and biological uptake. The present paper provides a summary on sources reported to have contributed to radioactive particle contamination in the environment and the characteristics of observed particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsecz A, Osan J, Kurunczi S, Alfoldy B, Varhegyi A, Torok S (2007) Analytical performance of different X-ray spectroscopic techniques for the environmental monitoring of the recultivated uranium mine site. Spectrochim Acta Part B At Spectrosc 62:769–776.

    Article  Google Scholar 

  • AMAP (1997) Arctic pollution issues: Radioactive contamination. Norwegian Radiation Protetion Authority, Østerås.

    Google Scholar 

  • AMAP (2004) AMAP Assessment 2002: Radioactivity in the Arctic. Arctic Monitoring and Assessment Programme, Oslo, Norway.

    Google Scholar 

  • Anspaugh LR, Church BW (1986) Historical estimates of external gamma exposure and collective external gamma exposure from testing at the Nevada Test Site. 1. Test series through Hardtack II, 1958. Health Phys 51:35–51.

    Article  CAS  Google Scholar 

  • Appleby LJ, Luttrell SJ (1993) Case-studies of significant radioactive releases. In: Warner F, Harrison RM, editors. Radioecology after Chernobyl. John Wiley & Sons LTD, Chichester.

    Google Scholar 

  • Arnold L (1992) The Windscale Fire 1957. Anatomy of a Nuclear Accident. Macmillan Press, London.

    Google Scholar 

  • Bolsunovsky AY, Tcherkezian VO (2001) Hot particles of the Yenisei River flood plain, Russia. J Environ Radioact 57:167–174.

    Article  CAS  Google Scholar 

  • Bunzl K (1997) Probability for detecting hot particles in environmental samples by sample splitting. Analyst 122:653–656.

    Article  CAS  Google Scholar 

  • Bunzl K (1998) Detection of radioactive hot particles in environmental samples by repeated mixing. Appl Radiat Isot 49:1625–1631.

    Article  CAS  Google Scholar 

  • Bunzl K, Tschiersch J (2001) Detection of radioactive hot particles in environmental samples using a Marinelli-beaker measuring geometry. Radiochim Acta 89:599–604.

    Article  CAS  Google Scholar 

  • Burns PA, Cooper MB, Johnston PN, Martin LJ, Williams GA (1994) Determination of the ratios of Pu-239 and Pu-240 to Am-241 for nuclear-weapons test sites in Australia. Health Phys 67:226–232.

    Article  CAS  Google Scholar 

  • Burns PA, Cooper MB, Lokan KH, Wilks MJ, Williams GA (1995) Characteristics of plutonium and americium contamination at the former UK atomic weapons test ranges at Maralinga and Emu. Appl Radiat Isot 46:1099–1107.

    Article  CAS  Google Scholar 

  • Chamberlain AC, Dunster HJ (1958) Deposition of radioactivity in north-west England from the accident at Windscale. Nature 182:629–630.

    Article  CAS  Google Scholar 

  • Chuguevskii AV, Sukhorukov FV, Mel'gunov MS, Makarova IV, Titov AT (2010) “Hot” particles of the Yenisei River: Radioisotope composition, structure, and behavior in natural conditions. Dokl Earth Sci 430:51–53.

    Article  CAS  Google Scholar 

  • Conradson SD (2000) XAFS – A technique to probe local structure. Los Alamos Sci 26:422–435.

    Google Scholar 

  • Cooper MB, Burns PA, Tracy BL, Wilks MJ, Williams GA (1994) Characterization of plutonium contamination at the former nuclear-weapons testing range at Maralinga in South-Australia. J Radioanal Nucl Chem 177:161–184.

    Article  CAS  Google Scholar 

  • Crocker GR, Oconnor JD, Freiling EC (1966) Physical and radiochemical properties of fallout particles. Health Phys 12:1099.

    Article  CAS  Google Scholar 

  • Danesi PR, de Regge P, La Rosa JJ, Makarewicz M, Moreno JMB, Radecki Z, Zeiller, E. (1998) Residual plutonium isotopes and americium in the terrestrial environment at the former nuclear test sites of Mururoa and Fangataufa. 7th International Conference on Low level measurements of actinides and long-lived radionuclides in biological and environmental samples. Salt Lake City.

    Google Scholar 

  • Danesi PR, Bleise A, Burkart W, Cabianca T, Campbell MJ, Makarewicz M, Moreno J, Tuniz C, Hotchkis M (2003a) Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo. J Environ Radioact 64:121–131.

    Article  CAS  Google Scholar 

  • Danesi PR, Markowicz A, Chinea-Cano E, Burkart W, Salbu B, Donohue D, Ruedenauer F, Hedberg M, Vogt S, Zahradnik P, Ciurapinski A (2003b) Depleted uranium particles in selected Kosovo samples. J Environ Radioact 64:143–154.

    Article  CAS  Google Scholar 

  • Darley PJ, Charles MW, Fell TP, Harrison JD (2003) Doses and risks from the ingestion of Dounreay fuel fragments. Radiat Prot Dosimetry 105:49–54.

    CAS  Google Scholar 

  • Devell L, Tovedal H, Bergstrom U, Appelgren A, Chyssler J, Andersson L (1986) Initial observations of fallout from the reactor accident at Chernobyl. Nature 321:192–193.

    Article  CAS  Google Scholar 

  • Dobrovolsky E, Lyalko V (1995) Acidification of soils and radioactive hot particles behavior: A macrokinetic approach. Water Air Soil Pollut 85:767–772.

    Article  CAS  Google Scholar 

  • Drell S, Peurifoy B (1994) Technical issues of a nuclear test ban. Annu Rev Nucl Part Sci 44:285–327.

    Article  CAS  Google Scholar 

  • Eriksson M, Osan J, Jernstrom J, Wegrzynek D, Simon R, Chinea-Cano E, Markowicz A, Bamford S, Tamborini G, Torok S, Falkenberg G, Alsecz A, Dahlgaard H, Wobrauschek P, Streli C, Zoeger N, Betti M (2005) Source term identification of environmental radioactive Pu/U particles by their characterization with non-destructive spectrochemical analytical techniques. Spectrochim Acta B 60:455–469.

    Article  Google Scholar 

  • Eriksson M, Lindahl P, Roos P, Dahlgaard H, Holm E (2008) U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris. Environ Sci Technol 42:4717–4722.

    Article  CAS  Google Scholar 

  • Gerdes A, Weyer S, Brey G, Durakovic A, Zimmermann I (2004) Monitoring depleted uranium contamination in the biosphere of Iraq using MC-ICP-MS. Geochim Cosmochim Acta 68:A506.

    Google Scholar 

  • Gregory S, Edwards A (1989) The hidden cost of deterrence – Nuclear-weapons accidents 1950–88. Bulletin of Peace Proposals 20:3–26.

    Google Scholar 

  • Heft RE (1970) Characterization of radioactive particles from nuclear weapons tests. Advances in Chemistry Series.

    Google Scholar 

  • IAEA (1998) Radiological conditions at the Semipalatinsk test site, Kazakhstan: Preliminary assessment and recommendations for further studies. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • IAEA CRP (2001) Radiochemical, chemical and physical characterisation of radioactive particles in the environment. IAEA, Vienna.

    Google Scholar 

  • Jakeman, D (1986) Notes of the level of radioactive contamination in the Sellafield area arising from discharges in the Early 1950s. Atomic Energy Establishment, Winfrith.

    Google Scholar 

  • Jernström J, Eriksson M, Osan J, Tamborini G, Torok S, Simon R, Falkenberg G, Alsecz A, Betti M (2004) Non-destructive characterisation of low radioactive particles from Irish Sea sediment by micro X-ray synchrotron radiation techniques: micro X-ray fluorescence (mu-XRF) and micro X-ray absorption near edge structure (mu-XANES) spectroscopy. J Anal At Spectrom 19:1428–1433.

    Article  Google Scholar 

  • Jimenez-Ramos MC, Barros H, Garcia-Tenorio R, Garcia-Leon M, Vioque I, Manjon G (2007) On the presence of enriched uranium in hot-particles from the terrestrial area affected by the Palomares accident (Spain). Environ Pollut 145:391–394.

    Article  CAS  Google Scholar 

  • JNREG (2004) Impacts on man and the environment in Northern areas from hypothetical accidents at “Mayak” PA, Urals, Russia. Joint Norwegian-Russian expert group for investigation of radioactive contamination in the Northern areas, Østerås.

    Google Scholar 

  • Kashparov VA, Oughton DH, Protsak VP, Zvarisch SI, Levchuk SE (1999) Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone. Health Phys 76:251–259.

    Article  CAS  Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59.

    Article  CAS  Google Scholar 

  • Krey PW (1967) Plutonium-238 from Snap-9A Burnup. Trans Am Nucl Soc 10:1.

    Google Scholar 

  • Krey PW, Leifer R, Benson WK, Dietz LA, Coluzza JL, Hendrikson HC (1979) Atmospheric burnup of the Cosmos-954 reactor. Science 205:583–585.

    Article  CAS  Google Scholar 

  • Kuriny VD, Ivanov YA, Kashparov VA, Loshchilov NA, Protsak VP, Yudin EB, Zhurba MA, Parshakov AE (1993) Particle-associated Chernobyl fallout in the local and intermediate zones. Ann Nucl Energy 20:415–420.

    Article  CAS  Google Scholar 

  • Landa ER, Stieff LR, Germani MS, Tanner AB, Evans JR (1994) Intense alpha-particle emitting crystallites in uranium mill wastes. Nucl Geophys 8:443–454.

    CAS  Google Scholar 

  • Lee MH, Clark SB (2005) Activities of Pu and Am isotopes and isotopic ratios in a soil contaminated by weapons-grade plutonium. Environ Sci Technol 39:5512–5516.

    Article  CAS  Google Scholar 

  • Leifer R, Juzdan ZR, Kelly WR, Fassett JD, Eberhardt KR (1987) Detection of uranium from Cosmos-1402 in the stratosphere. Science 238:512–514.

    Article  CAS  Google Scholar 

  • Leonard KS, McCubbin D, Lovett MB (1995) Physico-chemical characterisation of radionuclides discharged from a nuclear establishment. Sci Total Environ 175:9–24.

    Article  CAS  Google Scholar 

  • Lind OC (2006) Characterisation of radioactive particles in the environment using advanced techniques. PhD thesis, Norwegian University of Life Sciences.

    Google Scholar 

  • Lind OC, Salbu B, Janssens K, Proost K, Garcia-Leon M, Garcia-Tenorio R (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci Total Environ 376:294–305.

    Article  CAS  Google Scholar 

  • Lind, OC, Strømman, G, Skipperud, L, Rosseland, BO, Janssens, K, De Nolf, W, Jaroszewicz, J, Burkitbayev, M, Salbu, B (2008) Speciation and source identification of U from contaminated TENORM sites. European Geological Union, Vienna.

    Google Scholar 

  • Lind OC, Salbu B, Skipperud L, Janssens K, Jaroszewicz J, De Nolf W (2009) Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait. J Environ Radioact 100:301–307.

    Article  CAS  Google Scholar 

  • Mamuro T, Fujita A, Yoshikawa K, Matsunami T (1962) Microscopic examination of highly radioactive fall-out particles. Nature 196:529.

    Article  Google Scholar 

  • Mamuro T, Fujita A, Matsunam T (1965) Microscope examination of highly radioactive fallout particles from first Chinese nuclear test explosion. Health Phys 11:1097–1101.

    Article  CAS  Google Scholar 

  • Mamuro T, Yoshikaw K, Matsunami T, Fujita A (1966) Radionuclide fractionation in debris from a land surface burst. Health Phys 12:757–763.

    Article  CAS  Google Scholar 

  • Maucec A, de Meijer RJ, Rigollet C, Hendriks PHGM, Jones DG (2004) Detection of radioactive particles offshore by mu-ray spectrometry – Part I: Monte Carlo assessment of detection depth limits. Nucl Instr Meth A 525:593–609.

    Article  CAS  Google Scholar 

  • McCartney M, Kershaw PJ, Woodhead DS, Denoon DC (1994) Artificial radionuclides in the surface sediments of the Irish Sea, 1968–1988. Sci Total Environ 141:103–138.

    Article  CAS  Google Scholar 

  • McDowell LM, Whicker FW (1978) Size characteristics of plutonium particles in rocky flats soil. Health Phys 35:293–299.

    Article  CAS  Google Scholar 

  • McLaughlin JP, Vintro LL, Smith KJ, Mitchell PI, Zunic ZS (2003) Actinide analysis of a depleted uranium penetrator from a 1999 target site in southern Serbia. J Environ Radioact 64:155–165.

    Article  CAS  Google Scholar 

  • Mian Z, Ramana MV, Rajaraman R (2001) Plutonium dispersal and health hazards from nuclear weapon accidents. Curr Sci 80:1275–1284.

    CAS  Google Scholar 

  • Mongan TR, Ripple SR, Brorby GP, diTommaso DG (1996a) Plutonium releases from the 1957 fire at Rocky Flats. Health Phys 71:510–521.

    Article  CAS  Google Scholar 

  • Mongan TR, Ripple SR, Winges KD (1996b) Plutonium release from the 903 Pad at Rocky Flats. Health Phys 71:522–531.

    Article  CAS  Google Scholar 

  • Nees WL, Corley JP (1973) Environmental surveillance at Hanford for CY-1973. Pacific Northwest Laboratories, Richland, WA.

    Google Scholar 

  • Oughton DH, Salbu B, Brand TL, Day JP, Aarkrog A (1993) Under-determination of Sr-90 in soils containing particles of irradiated uranium oxide fuel. Analyst 118:1101–1105.

    Article  CAS  Google Scholar 

  • Pöllänen R, Klemola S, Ikaheimonen TK, Rissanen K, Juhanoja J, Paavolainen S, Likonen J (2001) Analysis of radioactive particles from the Kola Bay area. Analyst 126:724–730.

    Article  Google Scholar 

  • Salbu B (1988) Radionuclides associated with colloids and particles in rainwaters, Oslo, Norway. In: von Philipsborn H, Steinhäuser F, editors. Hot particles from the Chernobyl Fallout. Bergbau – und Industrimuseum, Theuern.

    Google Scholar 

  • Salbu B (2000a) Source-related characteristics of radioactive particles: A review. Radiat Prot Dosimetry 92:49–54.

    CAS  Google Scholar 

  • Salbu B (2000b) Speciation of radionuclides in the environment. In: R.A.Meyers, editor. Encyclopedia of analytical chemistry. John Wiley & Sons Ltd, Chichester.

    Google Scholar 

  • Salbu B (2001) Actinides associated with particles. In: Kudo A, editor. Plutonium in the environment. Elsevier, Tokyo.

    Google Scholar 

  • Salbu B (2009) Fractionation of radionuclide species in the environment. J Environ Radioact 100:283–289.

    Article  CAS  Google Scholar 

  • Salbu B, Bjornstad HE, Svaren I, Prosser SL, Bulman RA, Harvey BR, Lovett MB (1993) Size distribution of radionuclides in nuclear-fuel reprocessing liquids after mixing with seawater. Sci Total Environ 130:51–63.

    Article  Google Scholar 

  • Salbu B, Krekling T, Oughton DH, Ostby G, Kashparov VA, Brand TL, Day JP (1994) Hot particles in accidental releases from Chernobyl and Windscale nuclear installations. Analyst 119:125–130.

    Article  CAS  Google Scholar 

  • Salbu B, Nikitin AI, Strand P, Christensen GC, Chumichev VB, Lind B, Fjelldal H, Bergan TDS, Rudjord AL, Sickel M, Valetova NK, Foyn L (1997) Radioactive contamination from dumped nuclear waste in the Kara sea – Results from the joint Russian-Norwegian expeditions in 1992–1994. Sci Total Environ 202:185–198.

    Article  CAS  Google Scholar 

  • Salbu B, Krekling T, Lind OC, Oughton DH, Drakopoulos M, Simionovici A, Snigireva I, Snigirev A, Weitkamp T, Adams F, Janssens K, Kashparov VA (2001) High energy X-ray microscopy for characterisation of fuel particles. Nucl Instr Meth A 467:1249–1252.

    Article  Google Scholar 

  • Salbu B, Janssens K, Lind OC, Proost K, Danesi PR (2003) Oxidation states of uranium in DU particles from Kosovo. J Environ Radioact 64:167–173.

    Article  CAS  Google Scholar 

  • Salbu B, Lind OC, Skipperud L (2004) Radionuclide speciation and its relevance in environmental impact assessments. J Environ Radioact 74:233–242.

    Article  CAS  Google Scholar 

  • Salbu B, Janssens K, Lind OC, Proost K, Gijsels L, Danesi PR (2005) Oxidation states of uranium in depleted uranium particles from Kuwait. J Environ Radioact 78:125–135.

    Article  CAS  Google Scholar 

  • Shaun G (1990) The hidden cost of deterrence: nuclear weapons accidents. Brassey’s, London.

    Google Scholar 

  • Simon SL, Jenner T, Graham JC, Borchert A (1995) A comparison of macroscopic and microscopic measurements of plutonium in contaminated soil from the Republic-of-the-Marshall-Islands. J Radioanal Nucl Chem 194:197–205.

    Article  CAS  Google Scholar 

  • Sisefsky J (1961) Debris from tests of nuclear weapons – Activities roughly proportional to volume are found in particles examined by autoradiography and microscopy. Science 133:735.

    Article  CAS  Google Scholar 

  • Smith JN, Ellis KM, Polyak L, Ivanov G, Forman SL, Moran SB (2000) 239, 240Pu transport into the Arctic Ocean from underwater nuclear tests in Chernaya Bay, Novaya Zemlya. Cont Shelf Res 20:255–279.

    Article  Google Scholar 

  • Sowder AG, Clark SB, Field RA (1999) The transformation of uranyl oxide hydrates: The effect of dehydration on synthetic metaschoepite and its alteration to becquerelite. Environ Sci Technol 33:3552–3557.

    Article  CAS  Google Scholar 

  • Sukhorukov FV, Degermendzhi AG, Bolsunovsky A, Belolipetskii VM, Kosolapova LG (2004) Distribution and migration behaviours of radionuclides in the Yenisei River floodplain. SB RAS Publishers, Novosibirsk.

    Google Scholar 

  • Tamborini G (2004) SIMS analysis of uranium and actinides in microparticles of different origin. Microchim Acta 145:237–242.

    Article  CAS  Google Scholar 

  • Tcherkezian V, Galushkin B, Goryachenkova T, Kashkarov L, Liul A, Roschina I, Rumiantsev O (1995) Forms of contamination of the environment by radionuclides after the Tomsk accident (Russia, 1993). J Environ Radioact 27:133–139.

    Article  CAS  Google Scholar 

  • UNEP (2003) Depleted uranium in Bosnia and Herzegovina: Post-conflict environmental assessment. United Nations Environment Programme, Geneva.

    Google Scholar 

  • UNSCEAR (1993) Sources and effects of ionizing radiation. United Nations, New York.

    Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations, New York.

    Google Scholar 

  • Victorova NV, Garger EK (1990) Biological monitoring of the deposition and transport of radioactive aerosol particles in the Chernobyl NEP zone of influence. Proceedings of the CEC seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents; Kyshtym, Windscale, Chernobyl.

    Google Scholar 

  • Voillequé PG, Killough GG, Rope SK (2002) Methods for estimating radiation doses from short-lived gaseous radionuclides and radioactive particles released to the atmosphere during early Hanford operations – Final report. Centers for Disease Control and Prevention Department of Health and Human Services.

    Google Scholar 

  • Wolf SF, Bates JK, Buck EC, Dietz NL, Portner JA, Brown NR (1997) Physical and chemical characterization of actinides in soil from Johnston Atoll. Environ Sci Technol 31:467–471.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by EU 5. and 6. FP (RAFF, ADVANCE), IAEA (CRP, “Characterization of radioactive particles”), The Norwegian Research Council, and The Norwegian Foreign Ministry. Furthermore, the authors are indebted to close collaborating scientists: V. Kashparov, UIAR (Chernobyl), P.R. Danesi, IAEA (Kosovo, Kuwait), M. García León, University of Seville (Palomares), P. Mitchell, Univ. Coll. Dublin/N. Priest, Univ. of Middlesex (Semipalatinsk), P. Dale, SEPA (Dounrey), (Sellafield), S. Lukashenko, Kazakhstan (Semipalatinsk), H. Dahlgaard, Risoe National Laboratory (Thule), Joint Russian- Norwegian Expert Group (Kara Sea, Mayak, Kola) and K. Janssens, Univ. of Antwerp (ESRF, HASYLAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brit Salbu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salbu, B., Lind, O.C. (2011). Radioactive Particles Released into the Environment from Nuclear Events. In: Kalmykov, S., Denecke, M. (eds) Actinide Nanoparticle Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11432-8_12

Download citation

Publish with us

Policies and ethics