Skip to main content

An Improved Membrane Algorithm for Solving Time-Frequency Atom Decomposition

  • Conference paper
Membrane Computing (WMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5957))

Included in the following conference series:

Abstract

To decrease the computational complexity and improve the search capability of quantum-inspired evolutionary algorithm based on P systems (QEPS), a real-observation QEPS (RQEPS) was proposed. RQEPS is a hybrid algorithm combining the framework and evolution rules of P systems with active membranes and real-observation quantum-inspired evolutionary algorithm (QEA). The RQEPS involves a dynamic structure including membrane fusion and division. The membrane fusion is helpful to enhance the information communication among individuals and the membrane division is beneficial to reduce the computational complexity. An NP-complete problem, the time-frequency atom decomposition of noised radar emitter signals, is employed to test the effectiveness and practical capabilities of the RQEPS. The experimental results show that RQEPS is superior to QEPS, the greedy algorithm and binary-observation QEA in terms of search capability and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximation. Journal of Constructive Approximation 13(1), 57–98 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Ferreira da Silva, A.R.: Evolutionary-based methods for adaptive signal representation. Signal Processing 81, 927–944 (2001)

    Article  Google Scholar 

  3. Figueras i Ventura, R.M., Vandergheynst, P.: Matching pursuit through genetic algorithms. LTS-EPFL Tech. Rep. (2001)

    Google Scholar 

  4. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC 2005 Special Session on Real Parameter Optimization. Journal of Heuristics (2005), doi:10.1007/s10732-008-9080

    Google Scholar 

  5. Gribonval, R., Bacry, E.: Harmonic decomposition of audio signals with matching pursuit. IEEE Transactions on Signal Processing 51, 101–111 (2003)

    Article  MathSciNet  Google Scholar 

  6. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 6, 580–593 (2002)

    Article  Google Scholar 

  7. Huang, L., He, X.X., Wang, N., Xie, Y.: P Systems based multi-objective optimization algorithm. Progress in Natural Science 17, 458–465 (2007)

    Article  MATH  Google Scholar 

  8. Huang, L., Wang, N.: An optimization algorithm inspired by membrane computing. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4222, pp. 49–52. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Huang, L., Wang, N., Zhao, J.H.: Multiobjective optimization for controllers. Acta Automatica Sinica 34, 472–477 (2008)

    Article  Google Scholar 

  10. Leporati, A., Pagani, D.: A membrane algorithm for the min storage problem. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 443–462. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Liu, C.X., Zhang, G.X., Zhu, Y.H., Fang, C., Liu, H.W.: A quantum-inspired evolutionary algorithm based on P systems for radar emitter signals. In: Proc. Fourth International Conference on Bio-Inspired Computing: Theories and Applications, pp. 24–28 (2009)

    Google Scholar 

  12. Mallat, S.G., Zhang, Z.F.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  13. Nishida, T.Y.: An approximate algorithm for NP-complete optimization problems exploiting P systems. In: Proc. Brainstorming Workshop on Uncertainty in Membrane Computing, pp. 185–192 (2004)

    Google Scholar 

  14. Nishida, T.Y.: Membrane algorithms. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 55–66. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Păun, Gh., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287, 73–100 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qian, S., Chen, D.: Signal representation using adaptive normalized Gaussian functions. Signal Processing 36, 1–11 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stefanoiu, D., Ionescu, F.L.: A genetic matching pursuit algorithm. In: Proc. 7th International Symposium on Signal Processing and Its Applications, pp. 577–580 (2003)

    Google Scholar 

  19. Vesin, J.: Efficient implementation of matching pursuit using a genetic algorithm in the continuous space. In: Proc. 10th European Signal Processing Conference, pp. 2–5 (2000)

    Google Scholar 

  20. Zaharie, D., Ciobanu, G.: Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 536–553. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Zhang, G.X.: Time-frequency atom decomposition with quantum-inspired evolutionary algorithm. In: Circuits, Systems and Signal Processing (accepted, 2009)

    Google Scholar 

  22. Zhang, G.X., Gheorghe, M., Wu, C.Z.: A quantum-inspired evolutionary algorithm based on P systems for a class of combinatorial optimization. Fundamenta Informaticae 87, 93–116 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Zhang, G.X., Li, N., Jin, W.D.: Novel quantum genetic algorithm and its applications. Frontiers of Electrical and Electronic Engineering in China 1(1), 31–36 (2006)

    Article  Google Scholar 

  24. Zhang, G.X., Rong, H.N.: Real-observation quantum-inspired evolutionary algorithm for a class of numerical optimization problems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 989–996. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Zhang, G.X., Rong, H.N., Jin, W.D., Hu, L.Z.: Radar emitter signal recognition based on resemblance coefficient features. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 665–670. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, C., Zhang, G., Liu, H., Gheorghe, M., Ipate, F. (2010). An Improved Membrane Algorithm for Solving Time-Frequency Atom Decomposition. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2009. Lecture Notes in Computer Science, vol 5957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11467-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11467-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11466-3

  • Online ISBN: 978-3-642-11467-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics