Skip to main content

Phase Transition in a Quantum Ising Model with Long-Range Interaction

  • Chapter
  • First Online:
Quantum Quenching, Annealing and Computation

Part of the book series: Lecture Notes in Physics ((LNP,volume 802))

Abstract

Among the many models of Statistical Physics, Ising model [1–3] is perhaps the most ubiquitous. Till date it is being applied in varied context with reasonable success. In the “classical” version of this model, one has in general a set of lattice sites and to each site is associated a variable called spin which can assume the values \(\pm \frac{1}{2}\). For a system of N sites, there can hence be 2N possible configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All text books on Quantum Mechanics (and there is no dearth of it) cover this topic [20],[21],[22].

References

  1. K. Huang, Statistical Mechanics Second Edition (John Wiley and Sons, New York, 1987) (see for introduction).

    Google Scholar 

  2. M. Plischke and B. Bergersen, Equilibrium Statistical Physics Third Edition (World scientific, Singapore, 2006) (see for introduction).

    Google Scholar 

  3. R.K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1972) (see for introduction).

    Google Scholar 

  4. A. Ganguli and S. Dasgupta, Phys. Rev. E 80, 031115 (2009).

    Article  ADS  Google Scholar 

  5. D.C. Mattis, The Theory of Magnetism (Springer-Verlag, Berlin, 1985) vol. 2.

    Book  Google Scholar 

  6. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    MATH  Google Scholar 

  7. B.M. McCoy and T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, Massachusetts, 1973).

    MATH  Google Scholar 

  8. H.E. Stanley, Introduction to Phase Transition and Critical Phenomena (Oxford University Press, Oxford, 1971).

    Google Scholar 

  9. H.J. Lipkin, N. Meshkov and A.J. Glick, Nucl. Phys. 62,188 (1965).

    Article  MathSciNet  Google Scholar 

  10. P. Ribeiro, J. Vidal and R. Mosseri, Phys. Rev. E 78, 021106 (2008).

    Article  ADS  Google Scholar 

  11. J. Vidal, G. Palacios and R. Mosseri, Phys. Rev. A 69, 022107 (2004).

    Article  ADS  Google Scholar 

  12. J. Vidal, R. Mosseri and J. Dukelsky, Phys. Rev. A 69, 054101 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Ortiz, R. Somma, J. Dukelsky and S. Rombouts, Nucl. Phys. B 707, 421 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A.K. Chandra, J. Inoue and B.K. Chakrabarti, J. Phys. (Conf. Ser.) 143, 012013 (2009).

    Article  ADS  Google Scholar 

  15. R.H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  16. K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  17. M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  18. K.H. Fischer and J.A. Hertz, Spin Glasses (Cambridge University Press, 1993).

    Google Scholar 

  19. B.K. Chakrabarti, A. Dutta and P. Sen, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer-Verlag, Berlin, 1996) Chapter 6.

    MATH  Google Scholar 

  20. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1994).

    Google Scholar 

  21. V.A. Fock, Fundamentals of Quantum Mechanics (Mir Publishers, Moscow, 1978).

    Google Scholar 

  22. L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory) (Pergamon Press, Oxford, 1977).

    Google Scholar 

Download references

Acknowledgments

We are grateful to I. Bose, T.K. Das, G. Ortiz and D. Sen for helpful discussions and to J. Inoue for pointing out a mistake in an earlier version. One author (AG) is grateful to UGC for UPE fellowship. The work was financed by UGC-UPE Grant (Computational Group) and by CSIR project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Ganguli or S. Dasgupta .

Editor information

Editors and Affiliations

12.1 Appendix: Working Formulas for Degenerate Perturbation Theory

We present here the working formulas for the eigenvalues in the case of degenerate perturbation theory for ready reference.Footnote

All text books on Quantum Mechanics (and there is no dearth of it) cover this topic [20],[21],[22].

Consider a Hamiltonian

$${\mathcal H} = {\mathcal H}_0 +V.$$

The eigenstates of \({\mathcal H}_0\) are known and we want to solve for the eigenvalues of \({\mathcal H}\) when the effect of V is small. Let \({\mathcal H}_0\) have eigenvalues \(E_1^{(0)}\), \(E_2^{(0)}, \ldots\) and one of them, say \(E^{(0)}_n\) be g-fold degenerate with (one choice of orthogonal) eigenvectors

$$\mid \!\uppsi^{(n)}_1 \rangle, \mid \!\uppsi^{(n)}_2 \rangle, \ldots, \mid \!\uppsi^{(n)}_g \rangle.$$

The first-order perturbation corrections to the eigenvalue \(E_n^{(0)}\) are the eigenvalues of the \(g \times g\) matrix M defined by

$$M_{ij} = \langle \uppsi^{(n)}_i \mid V \mid \uppsi^{(n)}_j \rangle.$$
((12.44))

Let us call the eigenvalues of this matrix as λ 1, \(\lambda_2, \ldots, \lambda_g\). If no two eigenvalues of this matrix are equal, then the degeneracy is said to be completely removed in the first order. To obtain the second-order correction, one needs to calculate the eigenvectors \(\mid \!e_1 \rangle, \mid \!e_2 \rangle, \cdots, \mid \!e_g \rangle\) of the matrix M and construct therefrom the set of vectors

$$\mid \!\phi^{(n)}_i \rangle = \sum_{j=1}^g e_i (j) \mid \!\uppsi^{(n)}_j \rangle , \,\,\,\,\, i = 1, 2, \cdots, g,$$
((12.45))
which can be identified as the correct choice of unperturbed eigenvectors for the eigenvalue \(E_n^{(0)}\). In this equation, \(e_i (j)\) stands for the jth component of the vector \(\mid \!e_i \rangle\). The second-order corrections to the eigenvalue \(E_n^{(0)} + \lambda_i\) is now given by
$$\sum_{m, m \ne n} \frac{\mid \langle \phi^{(n)}_i \mid V \mid \uppsi^{(m)} \rangle \mid^2} {E_n^{(0)} - E_m^{(0)}},$$
((12.46))
where \(\uppsi^{(m)}\) is the eigenvector corresponding to an eigenvalue \(E_m^{(0)}\). Note that the sum is here over all the (degenerate or non-degenerate) eigenstates of \({\mathcal H}_0\) whose eigenvalue is different from the one under consideration, namely \(E_n^{(0)}\).

If all the eigenvalues of the matrix M are equal

$$\lambda_1 = \lambda_2 = \cdots = \lambda_g = \lambda \textrm{(say)},$$
then the first-order correction is still λ, but the degeneracy is not lifted (even partially). To find the second-order perturbation correction here, one needs to construct the \(g \times g\) matrix P defined by
$$P_{ij} = \sum_{m, m \ne n} \frac{ \langle \uppsi^{(n)}_i \mid V \mid \uppsi^{(m)} \rangle \langle \uppsi^{(m)} \mid V \mid \uppsi^{(n)}_j \rangle } {E_n^{(0)} - E_m^{(0)}}.$$
((12.47))

Here also, the sum is over all the eigenstates of \({\mathcal H}_0\) satisfying \(E_m^{(0)} \ne E_n^{(0)}\). The second-order correction to \(E_n^{(0)}\) are now the eigenvalues of P.

When some of the eigenvalues of M are degenerate, the degeneracy of the eigenvalue \(E_n^{(0)}\) is partially lifted, and one has to perform the degenerate perturbation theory (i.e. construct P and diagonalise it) over each degenerate subspace of M.

The condition of validity of these perturbation equations are that (as mentioned above) the change in eigenstates due to the introduction of V must be small. In quantitative terms, this means

$$\hbox{second-order correction} \ll \hbox{first-order correction} \ll {\textit d},$$
where d stands for the separation of eigenvalues at \(E_n^{(0)}\), that is, the smaller one of the quantities \(\mid E_n^{(0)} - E_{n-1}^{(0)} \mid\) and \(\mid E_n^{(0)} - E_{n+1}^{(0)} \mid\), \(E_{n \pm1}^{(0)}\) being the eigenvalues of \({\mathcal H}_0\) just below and above \(E_n^{(0)}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganguli, A., Dasgupta, S. (2010). Phase Transition in a Quantum Ising Model with Long-Range Interaction. In: Chandra, A., Das, A., Chakrabarti, B. (eds) Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11470-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11470-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11469-4

  • Online ISBN: 978-3-642-11470-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics