Skip to main content

Chiral Recognition and Enantioseparation Mechanisms in Capillary Electrokinetic Chromatography

  • Chapter
  • First Online:
Chiral Recognition in Separation Methods

Abstract

This chapter deals with the basic theory of enantiomeric separations in electrokinetic chromatography (EKC) in general and with the relationships between the recognition and the separation of enantiomers in EKC, in particular. It is important to note that the dependence between recognition and separation is not as straightforward in EKC as it is in chromatographic separation techniques. Therefore, a clear understanding of these dependences is very important for the explanation of experimentally observed results, as well as for a design of new powerful separation systems, technologies, and materials. Cyclodextrins (CDs) are mainly discussed as chiral selectors not only because the author has a long-term experience of working with these multifunctional macrocycles but also because CDs belong to the most widely used chiral selectors in EKC. In addition, these materials are quite well-characterized molecules of medium size. In addition, CDs are used for separation of enantiomers almost in all analytical separation techniques, as well as for determination of the enantiomeric excess in nonseparation techniques such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This chapter does not address applications of chiral EKC in chemistry, pharmaceutical and biomedical, environmental, and food analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ettre LS (1994) New, unified nomenclature for chromatography. Chromatographia 38:521–526

    Article  Google Scholar 

  2. Chankvetadze B, Blaschke G (2001) Enantioseparations in capillary electromigration techniques: recent developments and future trends. J Chromatogr A 906:309–363

    Article  CAS  Google Scholar 

  3. Chankvetadze B (1997) Separation selectivity in chiral capillary electrophoresis with charged selectors. J Chromatogr A 792:269–295

    Article  CAS  Google Scholar 

  4. Rizzi AM, Kremser L (1999) pK(a) shift-associated effects in enantioseparations by cyclodextrin-mediated capillary zone electrophoresis. Electrophoresis 20:2715–2722

    Article  CAS  Google Scholar 

  5. Süss F, Sänger-van de Griend K, Scriba KGE (2003) Migration order of dipeptide and tripeptide enantiomers in the presence of single isomer and randomly sulfated cyclodextrins as a function of pH. Electrophoresis 24:1069–1076

    Article  Google Scholar 

  6. Chankvetadze B, Lindner W, Scriba G (2004) Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomers with a chiral selector: commentary on the feasibility of the concept. Anal Chem 76:4256–4260

    Article  CAS  Google Scholar 

  7. Lomsadze K, Martinez-Giron AB, Castro-Puyana M, Chankvetadze L, Crego A, Salgado A, Marina ML, Chankvetadze B (2009) About the role of enantioselective selector–selectand interactions and the mobilities of temporary diastereomeric associates in enantiomer separations using capillary electrophoresis. Electrophoresis 30:2803–2811

    Article  CAS  Google Scholar 

  8. Terabe S, Ozaki H, Otsuka K, Ando T (1985) Electrokinetic chromatography with 2-O-carboxymethyl-β-cyclodextrin as a moving “stationary” phase. J Chromatogr 332:211–217

    Article  CAS  Google Scholar 

  9. Pirkle W, Pochapsky T (1989) Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem Rev 89:347–362

    Article  CAS  Google Scholar 

  10. Zarbly E, Franco P, Lämmerhofer M, Lindner W (2000) Poster presentation P264 on HPCE, February, Saarbrücken, Germany

    Google Scholar 

  11. Chankvetadze B, Endresz G, Blaschke G (1994) About some aspects of the use of charged cyclodextrins for capillary electrophoretic enantioseparations. Electrophoresis 15:804–807

    Article  CAS  Google Scholar 

  12. Chankvetadze B (1999) Recent trends in chiral separations using capillary electromigration techniques. TrAC (Trends Anal Chem) 18:485–498

    Article  CAS  Google Scholar 

  13. Offord RE (1966) Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature 211:591–593

    Article  CAS  Google Scholar 

  14. Wren SAC, Rowe RC (1992) Theoretical aspects of chiral separation in capillary electrophoresis. I. Initial evaluation of a model. J Chromatogr 603:235–241

    Article  CAS  Google Scholar 

  15. Chankvetadze B, Burjanadze N, Bergenthal D, Blaschke G (1999) Potential of flow-counterbalanced capillary electrophoresis for analytical and micropreparative separations. Electrophoresis 20:2680–2685

    Article  CAS  Google Scholar 

  16. Giddings JC (1967) Physico-chemical basis of chromatography. J Chem Educ 44:704–709

    Article  CAS  Google Scholar 

  17. Chankvetadze B, Schulte G, Blaschke G (1997) Nature and design of enantiomer migration order in chiral capillary electrophoresis. Enantiomer 2:157–178

    CAS  Google Scholar 

  18. Chankvetadze B (2002) Enantiomer migration order in chiral capillary electrophoresis. Electrophoresis 23:4022–4035

    Article  CAS  Google Scholar 

  19. Chankvetadze B, Schulte G, Blaschke G (1996) Reversal of enantiomer elution order in capillary electrophoresis using charged and neutral cyclodextrins. J Chromatogr A 732:183–186

    Article  CAS  Google Scholar 

  20. Valtcheva L, Mohammed J, Pettersson G, Hjerten S (1993) Chiral separation of β-blockers by high-performance capillary electrophoresis based on non-immobilized cellulase as enantioselective protein. J Chromatogr 638:263–267

    Article  CAS  Google Scholar 

  21. Tanaka Y, Terabe S (1995) Partial separation zone technique for the separation of enantiomers by affinity electrokinetic chromatography with proteins as chiral pseudo-stationary phases. J Chromatogr A 694:277–284

    Article  CAS  Google Scholar 

  22. Fanali S, Desiderio C (1996) Use of vancomycin as chiral selector in capillary electrophoresis. Optimization and quantitation of loxiglumide enantiomers in pharmaceuticals. J High Resolut Chromatogr 19:322–326

    Article  CAS  Google Scholar 

  23. Schulte G, Heitmeier S, Chankvetadze B, Blaschke G (1998) Chiral capillary electrophoresis–electrospray mass spectrometry coupling with charged cyclodextrin derivatives as chiral selectors. J Chromatogr A 800:77–82

    Article  CAS  Google Scholar 

  24. Fanali S, Desiderio C, Schulte G, Heitmeier S, Chankvetadze B, Blaschke G (1998) Chiral capillary electrophoresis–electrospray mass spectrometry coupling using vancomycin as chiral selector. J Chromatogr A 800:69–76

    Article  CAS  Google Scholar 

  25. Jäverfalk E, Amini A, Westerlund D, Andren PE (1998) Chiral separation of local anaesthetics by a capillary electrophoresis/partial filling technique coupled on-line to micro- electrospray mass spectrometry. J Mass Spectrom 33:183–189

    Article  Google Scholar 

  26. Amini A, Westerlund D (1998) Evaluation of association constants between drug enantiomers and human α1-acid glycoprotein by applying a partial-filling technique in affinity capillary electrophoresis. Anal Chem 70:1425–1430

    Article  CAS  Google Scholar 

  27. Amini A, Merclin N, Bastami S, Westerlund D (1999) Determination of association constants between enantiomers of orciprenaline and methyl-β-cyclodextrin as chiral selector by capillary zone electrophoresis using a partial filling technique. Electrophoresis 20:180–188

    Article  CAS  Google Scholar 

  28. Amini A, Westerlund D (1999) Principle and applications of the partial filling technique in capillary electrophoresis. Chromatographia 50:497–506

    Article  CAS  Google Scholar 

  29. Culbertson CT, Jorgenson JW (1994) Flow counterbalanced capillary electrophoresis. Anal Chem 66:955–962

    Article  CAS  Google Scholar 

  30. Culbertson CT, Jorgenson JW (1998) Separation of fluorescently derivatized deuterated isotopomers of phenylalanine using micellar electrokinetic chromatography and flow counterbalanced micellar electrokinetic chromatography. J Microcolumn Sep 11:175–183

    Article  Google Scholar 

  31. Zhao J, Hooker T, Jorgenson JW (1999) Synchronous cyclic capillary electrophoresis using conventional capillaries: system design and preliminary results. J Microcolumn Sep 11:431–437

    Article  CAS  Google Scholar 

  32. Cheng YF, Wu S, Cheng DY, Dovichi NJ (1990) Interaction of capillary zone electrophoresis with a sheath flow cuvette detector. Anal Chem 62:496–503

    Article  CAS  Google Scholar 

  33. Ross D, Locascio LE (2002) Microfluidic temperature gradient focusing. Anal Chem 74:2556–2564

    Article  CAS  Google Scholar 

  34. Balss KM, Vreeland WN, Phinney KW, Ross D (2004) Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing. Anal Chem 76:7243–7249

    Article  CAS  Google Scholar 

  35. Balss KM, Vreeland WN, Howell PB, Henry AC, Ross D (2004) Micellar affinity gradient focusing: a new method for electrokinetic focusing. J Am Chem Soc 126:1936–1937

    Article  CAS  Google Scholar 

  36. Koegler WS, Ivory CF (1996) Field gradient focusing: a novel method for protein separation. Biotechnol Prog 12:822–836

    Article  CAS  Google Scholar 

  37. Koegler WS, Ivory CF (1996) Focusing proteins in an electric field gradient. J Chromatogr A 726:229–236

    Article  CAS  Google Scholar 

  38. Ivory CF (2000) A brief review of alternative electrofocusing techniques. Sep Sci Technol 35:1777–1793

    Article  CAS  Google Scholar 

  39. Huang Z, Ivory CF (1999) Digitally controlled electrophoretic focusing. Anal Chem 71:1628–1632

    Article  CAS  Google Scholar 

  40. Zhao J, Jorgenson JW (1999) Application of synchronous cyclic capillary electrophoresis: isotopic and chiral separations. J Microcolumn Sep 11:439–449

    Article  CAS  Google Scholar 

  41. Kimata K, Hosoya K, Tanaka N (1997) Direct chromatographic separation of racemates on the basis of isotopic chirality. Anal Chem 69:2610–2612

    Article  CAS  Google Scholar 

  42. Terabe S (1989) Electrokinetic chromatography: an interface between electrophoresis and chromatography. Trends Anal Chem 8:129–134

    Article  CAS  Google Scholar 

  43. Meyring M, Chankvetadze B, Blaschke G (1999) Enantioseparation of thalidomide and its metabolites using capillary electrophoresis with various cyclodextrins and their combinations as chiral buffer additives. Electrophoresis 20:2425

    Article  CAS  Google Scholar 

  44. Mazzeo JR, Swartz ME, Grover ER (1995) A resolution equation for electrokinetic chromatography based on electrophoretic mobilities. Anal Chem 67:2966–2973

    Article  CAS  Google Scholar 

  45. Fillet M, Hubert PH, Crommen J (2000) Enantiomeric separations of drugs using mixtures of charged and neutral cyclodextrins. J Chromatogr A 875:123–134

    Google Scholar 

  46. Lurie IS (1997) Separation selectivity in chiral and achiral capillary electrophoresis with mixed cyclodextrins. J Chromatogr A 792:297–307

    Article  CAS  Google Scholar 

  47. Fillet M, Chankvetadze B, Crommen J, Blaschke G (1999) Designed combination of chiral selectors for improvement of enantioseparation selectivity in capillary electrophoresis. Electrophoresis 20:2691–2697

    Article  CAS  Google Scholar 

  48. Chankvetadze B, Burjanadze N, Crommen J, Blaschke G (2001) Enantioseparation of warfarin using cyclodextrin type chiral selectors. Chromatographia 53:S296–S301

    Article  CAS  Google Scholar 

  49. Fillet M, Bechet I, Schombug G, Hubbert P, Crommen J (1996) Enantiomeric separation of acidic drugs by capillary electrophoresis using a combination of charged and uncharged β-cyclodextrins as chiral selectors. J High Resolut Chromatogr 19:669–673

    Article  CAS  Google Scholar 

  50. Lelievre F, Gareil P, Bahadd Y, Galons H (1997) Intrinsic selectivity in capillary electrophoresis for chiral separations with dual cyclodextrin systems. Anal Chem 69:393–401

    Article  CAS  Google Scholar 

  51. Armstrong DW, Chang LW, Chang SSC (1998) Mechanism of capillary electrophoresis enantioseparations using a combination of an achiral crown ether plus cyclodextrins. J Chromatogr A 793:115–134

    Article  CAS  Google Scholar 

  52. Jakubetz H, Juza M, Schurig V (1998) Dual chiral recognition system involving cyclodextrin derivatives in capillary electrophoresis II. Enhancement of enantioselectivity. Electrophoresis 19:738–744

    Article  CAS  Google Scholar 

  53. Fanali S, Ossicini L, Foret F, Bocék P (1989) Resolution of optical isomers by capillary zone electrophoresis: study of enantiomeric and diastereoisomeric Co(III) complexes with ethylenediamine and amino acid ligands. J Microcolumn Sep 1:190–194

    Article  CAS  Google Scholar 

  54. Lin M, Wu N, Barcer GE, Sun P, Huie CW, Hartwick RA (1993) Enantiomeric separation by cyclodextrin-modified micellar electrokinetic chromatography using bile salt. J Liq Chromatogr 16:3667–3674

    Article  CAS  Google Scholar 

  55. Terabe S, Miyashita Y, Ishihama Y, Shibata O (1993) Cyclodextrin-modified micellar electrokinetic chromatography: separation of hydrophobic and enantiomeric compounds. J Chromatogr 636:47–55

    Article  CAS  Google Scholar 

  56. Wang J, Warner IM (1995) Combined polymerized chiral micelle and γ-cyclodextrin for chiral separation in capillary electrophoresis. J Chromatogr A 711:297–304

    Article  CAS  Google Scholar 

  57. Kuhn R, Wagner J, Walbroehl Y, Bereuter T (1994) Potential and limitations of an optically active crown ether for chiral separation in capillary zone electrophoresis. Electrophoresis 15:828–834

    Article  CAS  Google Scholar 

  58. Kuhn R, Steinmetz C, Bereuter T, Haas P, Erni F (1994) Enantiomeric separations in capillary zone electrophoresis using a chiral crown ether. J Chromatogr A 666:367–373

    Article  CAS  Google Scholar 

  59. Huang WX, Xu H, Fazio SD, Vivilechia RV (1997) Chiral separation of primary amino compounds using a non-chiral crown ether with β-cyclodextrin by capillary electrophoresis. J Chromatogr B 695:157–162

    Article  CAS  Google Scholar 

  60. Huang WX, Fazio SD, Vivilechia RV (1997) Achievement of enantioselectivity of non-polar primary amines by a non-chiral crown ether. J Chromatogr A 781:129–137

    Article  CAS  Google Scholar 

  61. Huang WX, Xu H, Fazio SD, Vivilechia RV (2000) Enhancement of chiral recognition by formation of a sandwiched complex in capillary electrophoresis. J Chromatogr A 875:361–369

    Article  CAS  Google Scholar 

  62. Ye B, Khaledi MG (1994) Poster No 113 presented at the 6th international symposium on high performance capillary electrophoresis, San Diego, CA, USA

    Google Scholar 

  63. Bjornsdottir I, Hansen SH, Terabe S (1996) Chiral separation in non-aqueous media by capillary electrophoresis using the ion-pair principle. J Chromatogr A 745:37–44

    Article  CAS  Google Scholar 

  64. Piette V, Crommen J, Lämmerhoefer M, Lindner W (1999) Enantiomeric separation of N-protected amino acids by non-aqueous capillary electrophoresis using quinine or tert-butyl carbamoylated quinine as chiral additive. Chirality 11:622–630

    Article  CAS  Google Scholar 

  65. Piette V, Fillet M, Lindner W, Crommen J (2000) Non-aqueous capillary electrophoretic enantioseparation of N-derivatized amino acids using cinchona alkaloids and derivatives as chiral counter-ions. J Chromatogr A 875:353–360

    Article  CAS  Google Scholar 

  66. Vincent JB, Vigh G (1998) Nonaqueous capillary electrophoretic separation of enantiomers using the single-isomer heptakis(2,3-diacetyl-6-sulfato)-β-cyclodextrin as chiral resolving agent. J Chromatogr A 816:233–241

    Article  CAS  Google Scholar 

  67. Tacker M, Glukhovskiy P, Cai H, Vigh G (1999) Nonaqueous capillary electrophoretic separation of basic enantiomers using heptakis(2,3-dimethyl-6-sulfato)-β-cyclodextrin. Electrophoresis 20:2794–2798

    Article  CAS  Google Scholar 

  68. Valko IE, Siren H, Riekkola M-L (1998) Characteristics of electroosmotic flow in capillary electrophoresis in water and in organic solvents without added ionic species. J Microcolumn Sep 11:199–208

    Article  Google Scholar 

  69. Mori Y, Ueno K, Umeda T (1997) Enantiomeric separations of primary amino compounds by nonaqueous capillary zone electrophoresis with a chiral crown ether. J Chromatogr A 757:328–332

    Article  CAS  Google Scholar 

  70. Wang F, Khaledi M (1998) Nonaqueous capillary electrophoresis chiral separations with quaternary ammonium β-cyclodextrin. J Chromatogr A 817:121–128

    Article  CAS  Google Scholar 

  71. Servais A-C, Rousseau A, Fillet M, Lomsadze K, Salgado A, Crommen J, Chankvetadze B (2010) Separation of propranolol enantiomers by capillary electrophoresis using sulfated β-cyclodextrin derivatives in aqueous and nonaqueous electrolytes: comparative CE and NMR studies. Electrophoresis 31:1467–1474

    Google Scholar 

  72. Hutt LD, Glavin DP, Bada JL, Mathies RA (1999) Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Anal Chem 71:4000–4006

    Article  CAS  Google Scholar 

  73. Rodriguez I, Jin LJ, Li SFY (2000) High-speed chiral separations on microchip electrophoresis devices. Electrophoresis 21:211–219

    Article  CAS  Google Scholar 

  74. Reetz MT, Kuhling KM, Deege A, Hinrichs H, Belder D (2000) Super-high-throughput screening of enantioselective catalysts by using capillary array electrophoresis. Angew Chem Int Ed Engl 39:3891–3893

    Article  CAS  Google Scholar 

  75. Gao Y, Shen Z, Wang H, Dai Z, Lin B (2005) Chiral separations on multichannel microfluidic chips. Electrophoresis 26:4774–4779

    Article  CAS  Google Scholar 

  76. Belder D, Deege A, Maass M, Ludwig M (2002) Design and performance of a microchip electrophoresis instrument with sensitive variable-wavelength fluorescence detection. Electrophoresis 23:2355–2361

    Article  CAS  Google Scholar 

  77. Schwarz MA, Hauser PC (2001) Rapid chiral on-chip separation with simplified amperometric detection. J Chromatogr A 928:225–232

    Article  CAS  Google Scholar 

  78. Olvecka E, Maser M, Kaniansky D, Johnk M, Stanislawski B (2001) Isotachophoresis separations of enantiomers on a planar chip with coupled separation channels. Electrophoresis 22:3347–3453

    Article  CAS  Google Scholar 

  79. Ludwig M, Belder D (2003) Coated microfluidic devices for improved chiral separations in microchip electrophoresis. Electrophoresis 24:2481–2486

    Article  CAS  Google Scholar 

  80. Piehl N, Ludwig M, Belder D (2004) Subsecond chiral separations on a microchip. Electrophoresis 25:3848–3852

    Article  CAS  Google Scholar 

  81. Belder D, Ludwig M (2003) Microchip electrophoresis for chiral separations. Electrophoresis 24:2422–2430

    Article  CAS  Google Scholar 

  82. Belder D, Ludwig M, Wang L-W, Reetz MT (2006) Enantioselective catalysis and analysis on a chip. Angew Chem Int Ed Engl 45:2463–2466

    Article  CAS  Google Scholar 

  83. Cho SI, Lee K-N, Kim Y-K, Jang JH, Chung DS (2002) Chiral separation of gemifloxacin sodium-containing media using chiral crown ether as a chiral selector by capillary and microchip electrophoresis. Electrophoresis 23:972–979

    Article  CAS  Google Scholar 

  84. Nagl S, Schulze P, Ludwig M, Belder D (2009) Progress in microchip enantioseparations. Electrophoresis 30:2765–2772

    Article  CAS  Google Scholar 

  85. Glukhovskiy P, Vigh G (1999) Analytical- and preparative-scale isoelectric focusing separation of enantiomers. Anal Chem 71:3814–3820

    Article  CAS  Google Scholar 

  86. Rizzi AM, Kremser L (1999) Enantioseparation of derivatized amino acids by capillary isoelectric focusing using cyclodextrin complexation. Electrophoresis 20:3410–3416

    Article  CAS  Google Scholar 

  87. Stalcup AM, Gahm KH, Gratz SR, Sutton RC (1998) Application of classical gel electrophoresis to the chiral separation of milligram quantities of terbutaline. Anal Chem 70:144–148

    Article  CAS  Google Scholar 

  88. Sutton RC, Gratz SR, Stalcup AM (1998) Use of capillary electrophoresis as a method development tool for classical gel electrophoresis. Analyst 123:1477–1480

    Article  CAS  Google Scholar 

  89. Lanz M, Caslavska J, Thormann W (1998) Enantiomeric separation of methadone by cyclodextrin-based capillary and recycling isotachophoresis. Electrophoresis 19:1081–1090

    Article  CAS  Google Scholar 

  90. Kaniansky D, Simunicova E, Ölvecka E, Ferancova A (1999) Separations of enantiomers by preparative capillary isotachophoresis. Electrophoresis 20:2786–2793

    Article  CAS  Google Scholar 

  91. Thome B, Ivory CF (2002) Continuous fractionation of enantiomer pairs in free solution using an electrophoretic analog of simulated moving bed chromatography. J Chromatogr A 953:263–277

    Article  CAS  Google Scholar 

  92. Thome B, Ivory CF (2003) Development of a segmented model for a continuous electrophoretic moving bed enantiomer separation. Biotechnol Prog 19:1703–1712

    Article  CAS  Google Scholar 

  93. Glukhovskiy P, Vigh G (2000) Use of single-isomer, multiply charged chiral resolving agents for the continuous, preparative-scale electrophoretic separation of enantiomers based on the principle of equal-but-opposite analyte mobilities. Electrophoresis 21:2010–2015

    Article  CAS  Google Scholar 

  94. Thome BM, Ivory CF (2007) Increasing the scale of true moving bed electrophoretic separations using filtration to reduce solvent volumetric flows between sections II and III. J Chromatogr A 1138:291–300

    Article  CAS  Google Scholar 

  95. Schulte M, Strube J (2001) Preparative enantioseparation by simulated moving bed chromatography. J Chromatogr A 906:399–416

    Article  CAS  Google Scholar 

  96. Nardi A, Eliseev A, Bocek P, Fanali S (1993) Use of charged and neutral cyclodextrins in capillary zone electrophoresis: enantiomeric resolution of some 2-hydroxy acids. J Chromatogr 638:247–253

    Article  CAS  Google Scholar 

  97. Vincent JB, Sokolowski AD, Nguyen TV, Vigh G (1997) A family of single-isomer chiral resolving agents for capillary electrophoresis. 1. Heptakis(2,3-diacetyl-6-sulfato)-β-cyclodextrin. Anal Chem 69:4226–4233

    Article  CAS  Google Scholar 

  98. Vincent JB, Kirby DM, Nguyen TV, Vigh G (1997) A family of single-isomer chiral resolving agents for capillary electrophoresis. 2. Hepta-6-sulfato-β-cyclodextrin. Anal Chem 69:4419–4428

    Article  CAS  Google Scholar 

  99. Cai H, Nguyen TV, Vigh G (1998) A family of single-isomer chiral resolving agents for capillary electrophoresis. 3. Heptakis(2,3-dimethyl-6-sulfato)-β-cyclodextrin. Anal Chem 70:580–589

    Article  CAS  Google Scholar 

  100. Maynard DK, Vigh G (2001) Heptakis(2-O-methyl-3,6,di-O-sulfo)-β-cyclodextrin: a single-isomer, 14-sulfated β-cyclodextrin for use as a chiral resolving agent in capillary electrophoresis. Electrophoresis 22:3152–3162

    Article  CAS  Google Scholar 

  101. Busby BM, Vigh G (2005) Synthesis of heptakis(2-O-methyl-3-O-acetyl-6-O-sulfo)-cyclomaltoheptaose, a single-isomer, sulfated β-cyclodextrin carrying nonidentical substituents at all the C2, C3, and C6 positions and its use for the capillary electrophoretic separation of enantiomers in acidic aqueous and methanolic background electrolytes. Electrophoresis 26:1978–1987

    Article  CAS  Google Scholar 

  102. Busby MB, Vigh G (2005) Synthesis of a single-isomer sulfated β-cyclodextrin carrying nonidentical substituents at all of the C2, C3, and C6 positions and its use for the electrophoretic separation of enantiomers in acidic aqueous and methanolic background electrolytes, Part 2: Heptakis(2-O-methyl-6-O-sulfo) cyclomaltoheptaose. Electrophoresis 26:3849–3860

    Article  CAS  Google Scholar 

  103. Rousseau A, Chiap P, Oprean R, Crommen J, Fillet M, Servais A-C (2009) Effect of the nature of the single-isomer anionic CD and the BGE composition on the enantiomeric separation of b-blockers in NACE. Electrophoresis 30:2862–2868

    Article  CAS  Google Scholar 

  104. Sanchez-Vindas S, Vigh G (2005) Non-aqueous capillary electrophoretic enantiomer separations using the tetrabutylammonium salt of heptakis(2,3-O-diacetyl-6-O-sulfo)-cyclomaltoheptaose, a single-isomer sulfated β-cyclodextrin highly-soluble in organic solvents. J Chromatogr A 1068:151–158

    Article  CAS  Google Scholar 

  105. Chankvetadze B, Endresz G, Blaschke G (1996) Charged cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Chem Soc Rev 25:141–153

    Article  CAS  Google Scholar 

  106. O’Keeffe F, Shamsi SA, Darcy R, Schwinte P, Warner IM (1997) A persubstituted cationic β-cyclodextrin for chiral separations. Anal Chem 69:4773–4782

    Article  Google Scholar 

  107. Hynes JL, Shamsi SA, O’Keeffe F, Darcy R, Warner IM (1998) Cationic β-cyclodextrin derivative for chiral separations. J Chromatogr A 803:261–271

    Article  Google Scholar 

  108. Kano K, Kitae T, Takashima H (1996) Use of electrostatic interaction for chiral recognition. Enantioselective complexation of anionic binaphthyls with protonated amino-β-cyclodextrin. J Incl Phenom Mol Recognit Chem 25:243–248

    Article  CAS  Google Scholar 

  109. Galaverna G, Corradini R, Dossena A, Marcelli R, Vecchio G (1997) Histamine-modified β-cyclodextrins for the enantiomeric separation of dansyl-amino acids in capillary electrophoresis. Electrophoresis 18:905–911

    Article  CAS  Google Scholar 

  110. Galaverna G, Corradini R, Dossena A, Marcelli R (1999) Histamine-modified cationic β-cyclodextrins as chiral selectors for the enantiomeric separation of hydroxy acids and carboxylic acids by capillary electrophoresis. Electrophoresis 20:2619–2629

    Article  CAS  Google Scholar 

  111. Nzeadibe K, Vigh G (2007) Synthesis of mono-6-deoxy-6-N,N,N′,N′,N′- pentamethylethylenediammonio-cyclomaltoheptaose, a single-isomer, monosubstituted, permanently dicationic β-CD and its use for enantiomer separations by CE. Electrophoresis 28:2589–2605

    Article  CAS  Google Scholar 

  112. Rousseau A, Chiap P, Ivanyi R, Crommen J, Fillet M, Servais A-C (2008) Validation of a nonaqueous capillary electrophoretic method for the enantiomeric purity determination of R-flurbiprofen using a single-isomer amino cyclodextrin derivative. J Chromatogr A 1204:219–225

    Article  CAS  Google Scholar 

  113. Rousseau A, Pedrini M, Chiap P, Ivanyi R, Crommen J, Fillet M, Servais A-C (2008) Determination of flurbiprofen enantiomers in plasma using a single-isomer amino cyclodextrin derivative in nonaqueous capillary electrophoresis. Electrophoresis 29:3641–3648

    Article  CAS  Google Scholar 

  114. Chankvetadze B, Schulte G, Bergenthal D, Blaschke G (1998) Comparative capillary electrophoresis and NMR studies of enantioseparation of dimethindene with cyclodextrins. J Chromatogr A 798:315–323

    Article  CAS  Google Scholar 

  115. Lelievre F, Gueit C, Gareil P, Bahaddi Y, Galons H (1997) Use of a zwitterionic cyclodextrin as a chiral agent for the separation of enantiomers by capillary electrophoresis. Electrophoresis 18:891–896

    Article  CAS  Google Scholar 

  116. Tanaka Y, Terabe S (1997) Enantiomer separation of acidic racemates by capillary electrophoresis using cationic and amphoteric β-cyclodextrins as chiral selectors. J Chromatogr A 781:151–160

    Article  CAS  Google Scholar 

  117. Chiari M, Desparti V, Gretich M, Crini G, Janus L, Morcellet M (1999) Vinylpyrrolidine-β-cyclodextrin copolymer: a novel chiral selector for capillary electrophoresis. Electrophoresis 20:2614–2618

    Article  CAS  Google Scholar 

  118. Chankvetadze B, Saito M, Yashima E, Okamoto Y (1998) Enantioseparation of atropisomeric 1,1ʹ-binaphthyl-2,2ʹ-diyl-hydrogen phosphate in capillary electrophoresis using di- and oligosaccharides as chiral selectors. Chirality 10:134–139

    CAS  Google Scholar 

  119. Nishi H, Izumoto S, Nakamura K, Nakai H, Sato T (1996) Dextran and dextrin as chiral selectors in capillary zone electrophoresis. Chromatographia 42:617–630

    Article  CAS  Google Scholar 

  120. Yarabe HH, Billiot E, Warner IM (2000) Enantiomeric separations by use of polymeric surfactant electrokinetic chromatography. J Chromatogr A 875:179–206

    Article  CAS  Google Scholar 

  121. El Rassi Z (2000) Chiral glycosidic surfactants for enantiomeric separation in capillary electrophoresis. J Chromatogr A 875:207–233

    Article  CAS  Google Scholar 

  122. Otsuka K, Terabe S (2000) Enantiomer separation of drugs by micellar electrokinetic chromatography using chiral surfactants. J Chromatogr A 875:163–178

    Article  CAS  Google Scholar 

  123. Mechref Y, El Rassi Z (1997) Capillary electrophoresis of herbicides. II. Evaluation of alkylglucoside chiral surfactants in the enantiomeric separation of phenoxy acid herbicides. J Chromatogr A 757:263–273

    Article  CAS  Google Scholar 

  124. Armstrong D, Nair UB (1997) Capillary electrophoretic enantioseparations using macrocyclic antibiotics as chiral selectors. Electrophoresis 18:2331–2342

    Article  CAS  Google Scholar 

  125. Desiderio C, Fanali S (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. J Chromatogr A 807:37–56

    Article  CAS  Google Scholar 

  126. Haginaka J (2000) Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors. J Chromatogr A 875:235–254

    Article  CAS  Google Scholar 

  127. Tanaka Y, Terabe S (1999) Studies on enantioselectivities of avidin, avidin–biotin complex and streptavidin by affinity capillary electrophoresis. Chromatographia 49:489–495

    Article  CAS  Google Scholar 

  128. Jung G, Hofstetter H, Feiertag S, Stoll D, Hofstetter O, Wiesmüller K-H, Schurig V (1996) Cyclopeptidbibliotheken als neue chirale Selektoren für die Kapillar elektrophorese. Angew Chem 108:2261–2263

    Article  Google Scholar 

  129. Chiari M, Desperati V, Manera E, Longhi R (1998) Combinatorial synthesis of highly selective cyclohexapeptides for separation of amino acid enantiomers by capillary electrophoresis. Anal Chem 70:4967–4973

    Article  CAS  Google Scholar 

  130. Vegvari A, Schmid MG, Kilar F, Gübitz G (1998) Chiral separation of α-amino acids by ligand-exchange capillary electrophoresis using N-(2-hydroxy-octyl)-L-4-hydroxyproline as a selector. Electrophoresis 19:2109–2114

    Article  CAS  Google Scholar 

  131. Sanchez Pena M, Zhang Y, Thibodeaux S, McLaughlin ML, Munoz de la Pena A, Warner IM (1996) Synthesis of a water-soluble chiral N-acylcalix(4)arene amino acid derivative. Tetrahedron Lett 37:584–587

    Google Scholar 

  132. Chankvetadze B, Burjanadze N, Pintore G, Bergenthal D, Bergander K, Mühlenbrock C, Breitkreutz J, Blaschke G (2000) Mechanistic study of opposite migration order of dimethindene enantiomers in capillary electrophoresis in the presence of native β-CD and heptakis-(2,3,6-tri-O-methyl)-β-CD. J Chromatogr A 875:455–470

    Article  CAS  Google Scholar 

  133. Yamashoji Y, Ariga T, Asano S, Tanaka M (1992) Chiral recognition and enantiomeric separation of alanine β-naphthylamide by cyclodextrins. Anal Chim Acta 268:39–47

    Article  CAS  Google Scholar 

  134. Chankvetadze B, Lomsadze K, Bergenthal D, Breitkreuz J, Bergander K, Blaschke G (2001) Mechanistic studies on the opposite migration order of clenbuterol enantiomers in capillary electrophoresis with β-CD and single-isomer heptakis(2,3-diacetyl-6-sulfo)-β-CD. Electrophoresis 22:3178–3184

    Article  CAS  Google Scholar 

  135. Chankvetadze B, Burjanadze N, Maynard DM, Bergander K, Bergenthal D, Blaschke G (2002) Comparative enantioseparations with native β-cyclodextrin and heptakis-(2-O-methyl-3,6-di-O-sulfo)-β-cyclodextrin in capillary electrophoresis. Electrophoresis 23:3027–3034

    Article  CAS  Google Scholar 

  136. Tanaka M, Asano S, Yoshinaga M, Kawaguchi Y, Tatsumi T, Shono T (1991) Separation of racemates by capillary zone electrophoresis based on complexation with cyclodextrins. Fresenius J Anal Chem 339:63–70

    Article  CAS  Google Scholar 

  137. Chankvetadze B, Fillet M, Burjanadze N, Bergenthal D, Bergander K, Luftmann H, Crommen J, Blaschke G (2000) Enantioseparation of aminoglutethimide with cyclodextrins in capillary electrophoresis and studies of selector–selectand interactions using NMR spectroscopy and electrospray ionization mass spectrometry. Enantiomer 5:313–322

    CAS  Google Scholar 

  138. Chankvetadze B, Lomsadze K, Burjanadze N, Breitkreutz J, Pintore G, Chessa M, Bergenthal D, Bergander K, Blaschke G (2003) Comparative enantioseparations with native β-cyclodextrin, randomly acetylated β-cyclodextrin and heptakis-(2,3-di-O-acetyl)- β-cyclodextrin in capillary electrophoresis. Electrophoresis 24:1083–1091

    Article  CAS  Google Scholar 

  139. Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Rev Chem Soc 33:337–347

    Article  CAS  Google Scholar 

  140. Chankvetadze B (2009) Separation of enantiomers with charged chiral selectors in CE. Electrophoresis 30:S211–S221

    Article  Google Scholar 

  141. Chankvetadze B (1997) Capillary electrophoresis in chiral analysis. John Wiley & Sons, Chichester, p 555

    Google Scholar 

  142. Horimai T, Ohara M, Ichinose M (1997) Optical resolution of new quinolone drugs by capillary electrophoresis with ligand-exchange and host-guest interactions. J Chromatogr A 760:235–244

    Article  CAS  Google Scholar 

  143. Zhu W, Vigh G (2000) Capillary electrophoretic separation of the enantiomers of weak acids in a high pH background electrolyte using the new, single-isomer, octakis(2,3-diacetyl-6-sulfato)-γ-cyclodextrin as chiral resolving agent. J Microcolumn Sep 12:167–171

    Article  CAS  Google Scholar 

  144. Tamisier-Karolak SL, Stenger MA, Bommart A (1999) Enantioseparation of β-blockers with two chiral centers by capillary electrophoresis using sulfated β-cyclodextrins. Electrophoresis 20:2656–2663

    Article  CAS  Google Scholar 

  145. Ishibushi K, Izumoto S, Nishi H, Sato T (1997) Enantiomer separation of denopamine by capillary electrophoresis with charged and uncharged cyclodextrins. Electrophoresis 18:1007–1012

    Article  Google Scholar 

  146. Jakubetz H, Juza M, Schurig V (1997) Electrokinetic chromatography employing an anionic and a cationic β-cyclodextrin derivative. Electrophoresis 18:897–904

    Article  CAS  Google Scholar 

  147. Katayama H, Ishihama Y, Asakawa N (1997) Migration order reversal of enantiomers in capillary electrophoretic separation. J Chromatogr A 764:151–156

    Article  CAS  Google Scholar 

  148. Katayama H, Ishihama Y, Asakawa N (2000) Enantiomeric separation by capillary electrophoresis with an electroosmotic flow-controlled capillary. J Chromatogr A 875:315–322

    Article  CAS  Google Scholar 

  149. Sabah S, Scriba G (1998) Electrophoretic stereoisomer separation of aspartyl dipeptides and tripeptides in untreated fused-silica and polyacrylamide-coated capillaries using charged cyclodextrins. J Chromatogr A 822:137–145

    Article  CAS  Google Scholar 

  150. Schmitt T, Engelhardt H (1993) Derivatized cyclodextrins for the separation of enantiomers in capillary electrophoresis. J High Resolut Chromatogr 16:525–529

    Article  CAS  Google Scholar 

  151. Scriba G (2002) Selected fundamental aspects of chiral electromigration techniques and their application to pharmaceutical and biomedical analysis. J Pharm Biomed Anal 27:373–399

    Article  CAS  Google Scholar 

  152. Sabah S, Scriba GKE (1999) pH-Dependent reversal of the chiral recognition of tripeptide enantiomers by carboxymethyl-β-cyclodextrin. J Chromatogr A 833:261–266

    Article  CAS  Google Scholar 

  153. Sabah S, Scriba GKE (2001) Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis using carboxymethyl-β-cyclodextrin and succinyl-β-cyclodextrin: influence of the amino acid sequence, nature of the cyclodextrin and pH. Electrophoresis 22:1385–1393

    Article  Google Scholar 

  154. Süß F, Poppitz W, Saenger-van de Griend C, Scriba GKE (2001) Influence of the amino acid sequence and nature of the cyclodextrin on the separation of small peptide enantiomers by capillary electrophoresis using randomly substituted and single isomer sulfated and sulfonated cyclodextrins. Electrophoresis 22:2416–2423

    Google Scholar 

  155. Sabah S, Süß F, Scriba GKE (2001) pH-dependence of complexation constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers. Electrophoresis 22:3163–3170

    Google Scholar 

  156. Sidamonidze N, Süß F, Poppitz W, Scriba GKE (2001) Influence of the amino acid sequence and nature of the cyclodextrin on the separation of small peptide enantiomers by capillary electrophoresis using α-, β-, and γ-cyclodextrin and the corresponding hydroxypropyl derivatives. J Sep Sci 24:777–783

    Google Scholar 

  157. Süß F, Kahle C, Holzgrabe U, Scriba GKE (2002) Studies on the chiral recognition of peptide enantiomers by neutral and sulfated β-cyclodextrin and heptakis-(2,3-di-O-acetyl)β-cyclodextrin using capillary electrophoresis and nuclear magnetic resonance. Electrophoresis 23:1301–1307

    Google Scholar 

  158. Süß F, Poppitz W, Scriba GKE (2002) Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis by the cationic cyclodextrin derivative 2-hydroxypropyltrimethyl-ammonium-β-cyclodextrin and by neutral β-cyclodextrin derivatives at alkaline pH. J Sep Sci 25:1147–1154

    Google Scholar 

  159. Aturki Z, Fanali S (1994) Use of β-cyclodextrin polymer as a chiral selector in capillary electrophoresis. J Chromatogr A 680:137–146

    Article  CAS  Google Scholar 

  160. Schulte G, Chankvetadze B, Blaschke G (1997) Enantioseparation in capillary electrophoresis using hydroxypropyl trimethylammonium salts of ß-CD as a chiral selector. J Chromatogr A 771:259–266

    Article  CAS  Google Scholar 

  161. Fanali S (2000) Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J Chromatogr A 875:89–122

    Article  CAS  Google Scholar 

  162. Fillet M, Hubert P, Crommen J (1998) Method development strategies for the enantioseparation of drugs by capillary electrophoresis using cyclodextrins as chiral additives. Electrophoresis 19:2834–2840

    Article  CAS  Google Scholar 

  163. Roos N, Ganzler K, Szeman J, Fanali S (1997) Systematic approach to cost- and time-effective method development with a starter kit for chiral separations by capillary electrophoresis. J Chromatogr A 782:257–269

    Article  CAS  Google Scholar 

  164. Plackett RC, Burman JB (1946) Biometrika 23:305–325

    Article  Google Scholar 

  165. Carlson R (1992) Design and optimization of organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  166. Box GEP (1952) Statistical design in the study of analytical methods. Analyst 77:879–889

    Article  CAS  Google Scholar 

  167. Cochran WG, Cox GM (1957) Experimental designs. Wiley, New York

    Google Scholar 

  168. Small TS, Fell AF, Coleman MW, Berridge JC (1995) Central composite design for the rapid optimisation of ruggedness and chiral separation of amlodipine in capillary electrophoresis. Chirality 7:226–234

    Article  CAS  Google Scholar 

  169. Wan H, Andersson PE, Engstrom P, Blomberg LG (1995) Direct and indirect chiral separation of amino acids by capillary electrophoresis. J Chromatogr A 704:179–193

    Article  CAS  Google Scholar 

  170. Varesio E, Gauvrit JY, Longeray R, Lanteri P, Veuthey J-L (1997).Central composite design in the chiral analysis of amphetamines by capillary electrophoresis. Electrophoresis 18:931–936

    Article  CAS  Google Scholar 

  171. Rogan MM, Altria KD, Goodall DM (1994) Plackett–Burman experimental design in chiral analysis using capillary electrophoresis. Chromatographia 38:723–729

    Article  CAS  Google Scholar 

  172. Boonkerd S, Detaevernier MR, Vander Heyden Y, Vindevogel J, Michotte Y (1996) Determination of the enantiomeric purity of dexfenfluramine by capillary electrophoresis: use of a Plackett-Burman design for the optimization of the separation. J Chromatogr A 736:281–289

    Article  CAS  Google Scholar 

  173. Fanali S, Furlanetto S, Aturki Z, Pinzauti S (1998) Experimental design methodologies to optimize the CE separation of epinephrine enantiomers. Chromatographia 48:395–400

    Article  CAS  Google Scholar 

  174. Gotti R, Furlanetto S, Andrisano V, Cavrini V, Pinzauti S (2000) Design of experiments for capillary electrophoretic enantioresolution of salbutamol using dermatan sulfate. J Chromatogr A 875:411–422

    Article  CAS  Google Scholar 

  175. Jimidar MI, Vennekens T, Van Ael W, Redlich D, De Smet M (2004) Optimization and validation of an enantioselective method for a chiral drug with eight stereo-isomers in capillary electrophoresis. Electrophoresis 25:2876–2884

    Article  CAS  Google Scholar 

  176. Gong WJ, Zhang YP, Choi S-H, Zhang YJ, Lee KP (2006) Application of response surface methodologies in capillary electrophoresis. Microchim Acta 156:327–335

    Article  CAS  Google Scholar 

  177. Zhang Y-J, Gong W-J, Zhang J-M, Zhang Y-P, Wang S-M, Wang L, Xue H-Y (2008) Optimization strategies using response surface methodologies in high performance liquid chromatography. J Liq Chromatogr Relat Technol 31:2893–2916

    Article  CAS  Google Scholar 

  178. Borges KB, Pupo MZ, de Freitas LAP, Bonato PS (2009) Box–Behnken design for the optimization of an enantioselective method for the simultaneous analysis of propranolol and 4-hydroxypropranolol by CE. Electrophoresis 30:2874–2881

    Article  CAS  Google Scholar 

  179. Wren SAC, Rowe RC (1992) Theoretical aspects of chiral separation in capillary electrophoresis: II. The role of organic solvent. J Chromatogr 609:363–367

    Article  CAS  Google Scholar 

  180. Stepanova ND, Stepanov AV (1969) Zh Prikl Khimii (Russ J Appl Chem Engl Edn) 42:1576–1578

    Google Scholar 

  181. Penn SG, Goodall DM, Loran JS (1993) Differential binding of tioconazole enantiomers to hydroxypropyl-β-cyclodextrin studied by capillary electrophoresis. J Chromatogr 636:149–152

    Article  CAS  Google Scholar 

  182. Penn SG, Bergstrom ET, Goodall DM, Loran JS (1994) Capillary electrophoresis with chiral selectors: optimization of separation and determination of thermodynamic parameters for binding of tioconazole enantiomers to cyclodextrins. Anal Chem 66:2866–2873

    Article  CAS  Google Scholar 

  183. Rogan MM, Altria KD, Goodall DM (1994) Enantiomeric separation of salbutamol and related impurities using capillary electrophoresis. Electrophoresis 15:808–817

    Article  CAS  Google Scholar 

  184. Copper CL, Davis JB, Cole RO, Sepaniak M (1994) Separations of derivatized amino acid enantiomers by cyclodextrin-modified capillary electrophoresis: mechanistic and molecular modeling studies. Electrophoresis 15:785–792

    Article  CAS  Google Scholar 

  185. Baumy P, Morin P, Dreux M, Viaud MC, Boye S, Guillaumet G (1995) Determination of β-cyclodextrin inclusion complex constants for 3,4-dihydro-2-H-1-benzopyran enantiomers by capillary electrophoresis. J Chromatogr A 707:311–326

    Article  CAS  Google Scholar 

  186. Rawjee YY, Staerk DU, Vigh G (1993) Capillary electrophoretic chiral separations with cyclodextrin additives. I. Acids: chiral selectivity as a function of pH and the concentration of β-cyclodextrin for fenoprofen and ibuprofen. J Chromatogr 635:291–306

    Article  CAS  Google Scholar 

  187. Rawjee YY, Williams RL, Vigh G (1994) Capillary electrophoretic chiral separations using cyclodextrin additives. III. Peak resolution surfaces for ibuprofen and homatropine as a function of the pH and the concentration of β-cyclodextrin. J Chromatogr 680:599–607

    Article  CAS  Google Scholar 

  188. Rawjee YY, Williams RL, Buckingham LA, Vigh G (1994) Effects of pH and hydroxypropyl β-cyclodextrin concentration on peak resolution in the capillary electrophoretic separation of the enantiomers of weak bases. J Chromatogr A 688:273–282

    Article  CAS  Google Scholar 

  189. Rawjee YY, Vigh G (1994) A peak resolution model for the capillary electrophoretic separation of the enantiomers of weak acids with hydroxypropyl β-cyclodextrin-containing background electrolytes. Anal Chem 66:619–627

    Article  CAS  Google Scholar 

  190. Williams RL, Vigh G (1996) Maximization of separation efficiency in capillary electrophoretic chiral separations by means of mobility-matching background electrolytes. J Chromatogr A 730:273–278

    Article  CAS  Google Scholar 

  191. Guttman A, Brunet S Cooke N (1996) Capillary electrophoresis separation of enantiomers by cyclodextrin array chiral analysis. LC-GC Int 9:88–95

    Google Scholar 

  192. Ingelse BA, Sarmani K, Reijenga JC, Kenndler E, Everaerts FM (1997) Chiral interactions in capillary zone electrophoresis: computer stimulation and comparison with experiment. Electrophoresis 18:938–942

    Article  CAS  Google Scholar 

  193. Reijenga JC, Ingelse BA, Everaerts FM (1997) Training software for chiral separations in capillary electrophoresis. J Chromatogr A 772:195–202

    Article  CAS  Google Scholar 

  194. Lelievre F, Gareil P, Bahadd Y, Galons H (1997) Intrinsic selectivity in capillary electrophoresis for chiral separations with dual cyclodextrin systems. Anal Chem 69:393–401

    Article  CAS  Google Scholar 

  195. Surapaneni S, Ruterbories K, Lindstrom T (1997) Chiral separation of neutral species by capillary electrophoresis evaluation of a theoretical model. J Chromatogr A 761:249–257

    Article  CAS  Google Scholar 

  196. Abushoffa AM, Fillet M, Hubert PH, Crommen J (2002) Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual cyclodextrin systems. J Chromatogr A 948:321–329

    Article  CAS  Google Scholar 

  197. Abushoffa AM, Fillet M, Marini RD, Hubert PH, Crommen J (2003) Enantiomeric separation of aminoglutethimide by capillary electrophoresis using native cyclodextrins in single and dual systems. J Sep Sci 26:536–542

    Article  CAS  Google Scholar 

  198. Mofaddel N, Krajian H, Villemin D, Desbene PL (2009) Enantioseparation of binaphthol and its monoderivatives by cyclodextrin-modified capillary zone electrophoresis: a mathematical approach. Talanta 78:631–637

    Article  CAS  Google Scholar 

  199. Gibbs JW Jr (1881) Letter to American Academy of Arts and Science, January, 1881 (cited from Melander WR, Erard JF, Horvath CS (1983) J Chromatogr 282:211)

    Google Scholar 

  200. Chankvetadze B, Blaschke G (1999) Selector–selectand interactions in chiral capillary electrophoresis. Electrophoresis 20:2592–2604

    Article  CAS  Google Scholar 

  201. Tiselius A (1930) The moving-boundary method of studying the electrophoresis of proteins. Nova Acta Reg Soc Sci Uppsala IV-7:1–107

    Google Scholar 

  202. Rundlett KL, Armstrong DW (1996) Examination of the origin, variation, and proper use of expressions for the estimation of association constants by capillary electrophoresis. J Chromatogr A 721:173–186

    Article  CAS  Google Scholar 

  203. Rundlett KL, Armstrong DW (1997) Methods for the estimation of binding constants by capillary electrophoresis. Electrophoresis 18:2194–2202

    Article  CAS  Google Scholar 

  204. Vespalec R, Bocek P (2000) Calculation of stability constants for the chiral selector-enantiomer interactions from electrophoretic mobilities. J Chromatogr A 875:431–445

    Article  CAS  Google Scholar 

  205. Job P (1928) Application of the spectrographic and spectrophotometric method to the study of the hydrolysis of some alkaline salts. C R Acad Sci Paris 186:1546–1548

    CAS  Google Scholar 

  206. Branch SK, Holzgrabe U, Jefferies TM, Malwitz H, Matchet MW (1994) Chiral discrimination of phenethylamines with β-cyclodextrin and heptakis(2,3-di-O-acetyl)β-cyclodextrin by capillary electrophoresis and NMR spectroscopy. J Pharm Biomed Anal 12:1507–1517

    Article  CAS  Google Scholar 

  207. Scott RL (1956) Recl Trav Chim Pays Bas 75:787–790

    Article  CAS  Google Scholar 

  208. Chankvetadze B, Burjanadze N, Pintore G, Bergenthal D, Bergander K, Breitkreutz, Mühlenbrock C, Blaschke G (2000) Separation of brompheniramine enantiomers by capillary electrophoresis and study of chiral recognition mechanisms of cyclodextrins using NMR-spectroscopy, UV-spectrometry, ESI–MS and X-ray crystallography. J Chromatogr A 875:471–484

    Article  CAS  Google Scholar 

  209. Chankvetadze B, Endresz G, Bergenthal D, Blaschke G (1996) Enantioseparation of mianserine analogues using capillary electrophoresis with neutral and charged cyclodextrin buffer modifiers, 13C NMR study of the chiral recognition mechanism. J Chromatogr A 717:245–253

    Google Scholar 

  210. Endresz G, Chankvetadze B, Bergenthal D, Blaschke G (1996) Comparative capillary electrophoresis and nuclear magnetic resonance studies of the chiral recognition of racemic metomidate with cyclodextrin hosts. J Chromatogr A 732:133–142

    Article  CAS  Google Scholar 

  211. Owens PK, Fell AF, Coleman MW, Kinns M, Berridge JC (1997) Use of 1H-NMR spectroscopy to determine the enantioselective mechanism of neutral and anionic cyclodextrins in capillary electrophoresis. J Pharm Biomed Anal 15:1603–1619

    Article  CAS  Google Scholar 

  212. Owens PK, Fell AF, Coleman MW, Berridge JC (1998) Effect of charged and uncharged chiral additives on the resolution of amlodipine enantiomers in liquid chromatography and capillary electrophoresis. J Chromatogr A 797:187–195

    Article  CAS  Google Scholar 

  213. Chankvetadze B, Pintore G, Bergenthal D, Burjanadze N, Strickmann D, Cerri R, Blaschke G (1998) Capillary electrophoresis, nuclear magnetic resonance and mass-spectrometric studies of opposite chiral recognition of chlorpheniramine enantiomers with various cyclodextrins. Electrophoresis 19:2101–2108

    Article  CAS  Google Scholar 

  214. Chankvetadze B, Burjanadze N, Pintore G, Strickmann D, Bergenthal D, Blaschke G (1998) Chiral recognition of verapamil by cyclodextrins studied with capillary electrophoresis, NMR- and mass-spectrometry. Chirality 11:635–644

    Article  Google Scholar 

  215. Chankvetadze B, Endresz G, Schulte G, Bergenthal D, Blaschke G (1996) Capillary electrophoresis and 1H-NMR studies on chiral recognition of atropisomeric binaphthyl derivatives by cyclodextrin hosts. J Chromatogr A 732:143–150

    Article  CAS  Google Scholar 

  216. Cescutti P, Carozzo D, Rizzo R (1996) Study of the inclusion complexes of aromatic molecules with cyclodextrins using ionspray mass spectrometry. Carbohydr Res 291:105–115

    Article  Google Scholar 

  217. Connors KA (1987) Binding constants. Wiley & Sons, New York

    Google Scholar 

  218. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1918

    Article  CAS  Google Scholar 

  219. Stefansson M, Novotny M (1993) Electrophoretic resolution of monosaccharide enantiomers in borate-oligosaccharide complexation media. J Am Chem Soc 115:11573–11580

    Article  CAS  Google Scholar 

  220. Kano K, Tamiya Y, Hashimoto S (1992) Binding forces in complexation of p-alkylphenols with β-cyclodextrin and methylated β-cyclodextrins. J Incl Phenom Mol Recognit Chem 13:287–293

    Article  CAS  Google Scholar 

  221. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  222. Foster R, Fyfe CA (1965) Interaction of electron acceptors with bases: Part 15. Determination of association constants of organic charge-transfer complexes by NMR spectroscopy. Trans Faraday Soc 61:1626–1631

    Article  CAS  Google Scholar 

  223. Francotte E, Cherkaoui S, Faupel M (1993) Separation of the enantiomers of some racemic nonsteroidal aromatase inhibitors and barbiturates by capillary electrophoresis. Chirality 5:516–526

    Article  CAS  Google Scholar 

  224. Castro-Puyana M, Crego AL, Marina ML, Garcia-Ruiz C (2007) Enantioselective separation of azole compounds by EKC. Reversal of migration order of enantiomers with CD concentration. Electrophoresis 28:2667–2674

    Article  CAS  Google Scholar 

  225. Schneider HJ, Hacket F, Rüdiger V (1998) NMR Studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1786

    Article  CAS  Google Scholar 

  226. Holzgrabe U, Mallwitz H, Branch SK, Jefferies TM, Wiese M (1997) Chiral discrimination by NMR spectroscopy of ephedrine and N-methylephedrine induced by β-cyclodextrin, heptakis(2,3-di-O-acetyl)β-cyclodextrin, and heptakis(6-O-acetyl)β-cyclodextrin. Chirality 9:211–219

    Article  CAS  Google Scholar 

  227. Hybl A, Rundle RE, Williams DE (1965) The crystal and molecular structure of the cyclohexaamylose–potassium acetate complex. J Am Chem Soc 87:2779–2788

    Article  CAS  Google Scholar 

  228. Saenger W, Jacob J, Gessler K, Steiner T, Hoffmenn D, Sanabe H, Koizumi K, Smith SM, Takaha T (1998) Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem Rev 98:1787–1802

    Article  CAS  Google Scholar 

  229. Harata K (1998) Structural aspects of stereodifferentiation in the solid state. Chem Rev 98:1803–1828

    Article  CAS  Google Scholar 

  230. Kano K, Minami K, Horiguchi K, Ishihama T, Kodera M (1995) Ability of non-cyclic oligosaccharides to form molecular complexes and its use for chiral separation by capillary zone electrophoresis. J Chromatogr A 694:307–313

    Article  CAS  Google Scholar 

  231. Copper CL, Davis JB, Sepaniak MJ (1995) Mechanisms of enantiomeric resolution in cyclodextrin-modified capillary electrophoretic separations of binaphthyl compounds. Chirality 7:401–408

    Article  CAS  Google Scholar 

  232. Kano K, Tamiya Y, Otsuki C, Shimomura T, Ohno T, Hayashida O, Murakami Y (1993) Chiral recognition by cyclic oligosaccharides. Enantioselective complexation of binaphthyl derivatives with cyclodextrins. Supramol Chem 2:137–143

    Article  CAS  Google Scholar 

  233. Lipkowitz KB (2000) Atomistic modeling of enantioselective binding. Acc Chem Res 33:555–562

    Article  CAS  Google Scholar 

  234. Lipkowitz KB (1994) In: Subramanian G (ed) A practical approach in chiral separations by liquid chromatography. VCH, Weinheim, pp 19–55

    Google Scholar 

  235. Lipkowitz K (2001) Atomistic modeling of enantioselection in chromatography. J Chromatogr A 906:417–442

    Article  CAS  Google Scholar 

  236. Dodziuk H, Lukin O, Nowińsk KS (2000) Molecular mechanics calculations of molecular and chiral recognition by cyclodextrins. Is it reliable? The selective complexation of decalins by β- cyclodextrin. J Mol Struct: THEOCHEM 503:221–230

    Article  CAS  Google Scholar 

  237. Dodziuk H, Lukin O (2000) Modelling of molecular and chiral recognition by cyclodextrins. Is it reliable? Part 2. Molecular dynamics calculations in vacuum pertaining to the selective complexation of decalins by β-cyclodextrin. Pol J Chem 74:997–1001

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bezhan Chankvetadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chankvetadze, B. (2010). Chiral Recognition and Enantioseparation Mechanisms in Capillary Electrokinetic Chromatography. In: Berthod, A. (eds) Chiral Recognition in Separation Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12445-7_5

Download citation

Publish with us

Policies and ethics