Skip to main content

Diffraction Radiation at the Resonant Frequency

  • Chapter
  • First Online:
Diffraction Radiation from Relativistic Particles

Abstract

Diffraction radiation is microscopically a result of the scattering of the self field of a uniformly moving charge from the atoms of a medium. The cross section for the scattering of an electromagnetic wave from an atom is maximal near resonance, so that the diffraction radiation intensity should increase at resonant frequencies. As known, the transverse field of a source at small distances is much lower than the longitudinal field. Therefore, the energy transfer from an exited atom to an unexcited atom in dense media occurs primarily through the transverse field by the dipole—dipole interaction rather than through the emission and absorption of resonant transverse waves. As a result, the interaction of a resonant photon with an atom most likely leads to disappearance of the photon and appearance of an electron excitation further migrating in the medium as an exciton. For this reason, the resonant photon, i.e., the photon whose energy is close to the exciton energy does not penetrate inside the medium. For the same reason, the emission of resonant transverse waves by an atom from the depth of a dense medium is impossible. Thus, the probability of the formation of diffraction radiation at the resonant frequency in the process of scattering from an atom in a dense medium is much lower than the probability of the formation of an exciton. Therefore, diffraction radiation is generated due to the scattering of the self field of the particle from the atoms of the surface layer. The thickness of this layer is determined by the absorption coefficient of transverse resonant waves. Since this layer is thin, we can use the approximation of the single scattering of the resonant component of the self field of the fast particle from the atoms of the medium. This approximation in the problem of the reflection of resonant electromagnetic waves from the surface of a medium was proposed by Fermi [1]. This makes it possible to solve the reflection problem without the usual macroscopic boundary conditions and provides a good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fermi, E.: On the Reflection and Diffusion of Resonance Radiation. Collection of Papers. Moscow (in Russian) (1971)

    Google Scholar 

  2. Bolotovskiy, B.M., Voskresenskiy, G.V.: Diffraction Radiation. Phys.-Uspekhi 9, 73 (1966)

    Article  ADS  Google Scholar 

  3. Shestopalov, V.P.: Diffraction Electronics. Kharkov, Ukraine (1976)

    Google Scholar 

  4. Bolotovskiy, B.M., Galst’yan, E.A.: Diffraction and Diffraction Radiation. Phys.-Uspekhi 43, 755 (2000)

    Article  ADS  Google Scholar 

  5. Potylitsyn, P.: Transition Radiation and Diffraction Radiation. Similarities and Differences. Nucl. Instrum. Methods Phys. Res. B 145, 169 (1998)

    Article  ADS  Google Scholar 

  6. Fermi E.: On the Reflection and Diffusion of Resonance Radiation. Rend. Lincei. 33(1), 90 (1924)

    Google Scholar 

  7. Ryazanov, M.I.: Diffraction radiation of a fast particle at resonant frequency. Sov. Phys. JETP 127, 528 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Petrovich Potylitsyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potylitsyn, A.P., Ryazanov, M.I., Strikhanov, M.N., Tishchenko, A.A. (2010). Diffraction Radiation at the Resonant Frequency. In: Diffraction Radiation from Relativistic Particles. Springer Tracts in Modern Physics, vol 239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12513-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12513-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12512-6

  • Online ISBN: 978-3-642-12513-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics