Skip to main content

Adaptation of Rhodococcus to Organic Solvents

  • Chapter
  • First Online:
Biology of Rhodococcus

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Bacterial tolerance and ability to adapt to organic solvents can be of valuable importance in biocatalytic and bioremediation processes. Strains of Rhodococcus have been reported to be particularly solvent tolerant, while presenting a broad array of enzymes with potential for the production of commercially interesting compounds and/or for the metabolism of recalcitrant organic solvents. The adaptability and versatility of Rhodococcus cells can further broaden their application scope. In fact, these cells can adapt the cell wall and membrane compositions, as well as the physicochemical properties of the cell surface, can degrade or bioconvert toxic compounds such as benzene and toluene, and can aggregate and produce exopolymeric substances to protect the cell population from stressful environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbad-Andaloussi S, Lagnel C, Warzywoda M, Monot F (2003) Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzyme Microb Technol 32:446–454

    CAS  Google Scholar 

  • Abe A, Inoue A, Usami R, Moriya K, Horikoshi K (1995) Properties of a newly isolated marine bacterium that can degrade polyaromatic hydrocarbons in the presence of organic solvents. J Mar Biotechnol 2:182–186

    CAS  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    PubMed  CAS  Google Scholar 

  • Alvarez HM (2003) Relationship between beta-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegradation 52:35–42

    CAS  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    PubMed  CAS  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Google Scholar 

  • Bell K, Philp J, Aw D, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210

    PubMed  CAS  Google Scholar 

  • Benoit S, Benachour A, Taouji S, Auffray Y, Hartke A (2002) H2O2, which causes macrophage-related stress, triggers induction of expression of virulence-associated plasmid determinants in Rhodococcus equi. Infect Immun 70:3768–3776

    PubMed  CAS  Google Scholar 

  • Booth IR (2002) Stress and single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19–30

    PubMed  Google Scholar 

  • Bouchez-Naïtali M, Vandecasteele JP (2008) Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol 24:1901–1907

    Google Scholar 

  • Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell floculation. Microbiology 147:2537–2543

    PubMed  Google Scholar 

  • Bouchez-Naïtali M, Abbad-Andaloussi S, Warzywoda M, Monot F (2004) Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium. Appl Microbiol Biotechnol 65:440–445

    PubMed  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    PubMed  CAS  Google Scholar 

  • Brink LES, Tramper J (1985) Optimization of organic solvent in multiphase biocatalysis. Biotechnol Bioeng 27:1258–1269

    PubMed  CAS  Google Scholar 

  • Cassells JM, Halling PJ (1990) Protease-catalyzed peptide-synthesis in aqueous–organic 2-phase systems: reactant precipitation and interfacial inactivation. Enzyme Microb Technol 12:755759

    Google Scholar 

  • Čejková A, Masak J, Jirku V, Vesely M, Patek M, Nesvera J (2005) Potential of Rhodococcus erythropolis as a bioremediation organism. World J Microbiol Biotechnol 21:317–321

    Google Scholar 

  • Chapman JS (2003) Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegrad 51:271–276

    CAS  Google Scholar 

  • Chen HL, Yao J, Wang L, Wang F, Bramanti E, Maskow T, Zaray G (2009) Evaluation of solvent tolerance of microorganisms by microcalorimetry. Chemosphere 74:1407–1411

    PubMed  CAS  Google Scholar 

  • Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269–277

    PubMed  CAS  Google Scholar 

  • Cronan JE Jr (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205

    PubMed  CAS  Google Scholar 

  • Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462

    PubMed  CAS  Google Scholar 

  • de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Tibtech 16:493–499

    Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2002a) Maintenance of cell viability in the biotransformation of (-)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 19:389–398

    Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2002b) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B Enzym 19:377–387

    Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2003) A simple method to observe organic solvent drops with a standard optical microscope. Microsc Res Tech 60:465–466

    PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2004) Solvent toxicity in organic–aqueous systems analysed by multivariate analysis. Bioprocess Biosyst Eng 26:361–375

    PubMed  CAS  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005a) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726

    PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2005b) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol 51:389–399

    PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2007) Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiol Ecol 61:406–413

    PubMed  Google Scholar 

  • de Carvalho CCCR, van Keulen F, da Fonseca MMR (2000) Biotransformation of limonene-1, 2-epoxide to limonene-1, 2-diol by Rhodococcus erythropolis cells – An introductory approach to selective hydrolysis and product separation. Food Technol Biotechnol 38:181–185

    Google Scholar 

  • de Carvalho CCCR, Pons MN, da Fonseca MMR (2003) Principal components analysis as a tool to summarise biotransformation data: influence on cells of solvent type and phase ratio. Biocatal Biotransform 21:305–314

    Google Scholar 

  • de Carvalho CCCR, da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, da Fonseca MMR, Ferreira BS, Fernandes P (2004) Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 64:215–222

    PubMed  Google Scholar 

  • de Carvalho CCCR, Parreno-Marchante B, Neumann G, da Fonseca MMR, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol 67:383–388

    PubMed  CAS  Google Scholar 

  • de Carvalho CCCR, Fatal V, Alves SS, da Fonseca MMR (2007) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl Microbiol Biotechnol 76:1423–1430

    PubMed  CAS  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320

    PubMed  CAS  Google Scholar 

  • Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis- into trans- unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Environ Microbiol 38:382–387

    CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    PubMed  CAS  Google Scholar 

  • Fang J, Lyon D, Wiesner M, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Tecnol 41:2636–2642

    CAS  Google Scholar 

  • Fernandes P, Ferreira BS, Cabral JMS (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216

    PubMed  CAS  Google Scholar 

  • Gilbert P, Brown MRW (1995) Some perspectives on preservation and disinfection in the present day. Int Biodeterior Biodegradation 36:219–226

    Google Scholar 

  • Gutierrez JA, Nichols P, Couperwhite I (1999) Changes in whole-cell derived fatty acids induced by benzene and occurrence of the unusual 16:1ω6c in Rhodococcus sp. 33. FEMS Microbiol Lett 176:213–218

    Google Scholar 

  • Gutiérrez T, Learmonth RP, Nichols PD, Couperwhite I (2003) Comparative benzene-induced fatty acid changes in a Rhodococcus species and its benzene-sensitive mutant: possible role of myristic and oleic acids in tolerance. J Chem Ecol 29:2369–2378

    PubMed  Google Scholar 

  • Gutiérrez T, Learmonth RP, Couperwhite I (2009) Analysis of benzene-induced effects on Rhodococcus sp. 33 reveals that constitutive processes play a major role in conferring tolerance. The Scientific World Journal 9:209–223

    Google Scholar 

  • Hamada T, Sameshima Y, Honda K, Omasa T, Kato J, Ohtake H (2008) A comparison of various methods to predict bacterial predilection for organic solvents used as reaction media. J Biosci Bioeng 106:357–362

    PubMed  CAS  Google Scholar 

  • Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217

    PubMed  CAS  Google Scholar 

  • Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    PubMed  CAS  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    CAS  Google Scholar 

  • Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7

    PubMed  CAS  Google Scholar 

  • Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973

    PubMed  CAS  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266

    CAS  Google Scholar 

  • Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    PubMed  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077

    PubMed  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343

    PubMed  CAS  Google Scholar 

  • Jucker BA, Harms H, Zehnder AJB (1996) Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon. J Bacteriol 178:5472–5479

    PubMed  CAS  Google Scholar 

  • Junker F, Ramos J (1999) Involvement of the cis/trans isomerase Cti in the solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R, Horikoshi K (1999) Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. J Bacteriol 181:4493–4998

    PubMed  CAS  Google Scholar 

  • Laane C, Boeren S, Vos K (1985) On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol 3:251–252

    CAS  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    PubMed  CAS  Google Scholar 

  • Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol Symp Suppl 92:46S–54S

    Google Scholar 

  • Lang S, Philp JC (1998) Surface active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70

    PubMed  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    PubMed  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2006) Biodegradation by members of the genus Rhodococcus: Biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 59:1–29

    PubMed  CAS  Google Scholar 

  • Leisinge T (1996) Biodegradation of chlorinated aliphatic compounds. Curr Opin Biotechnol 7:295–300

    Google Scholar 

  • Leneva NA, Kolomytseva MP, Baskunov BP, Golovleva LA (2009) Phenanthrene and anthracene degradation by microorganisms of the genus Rhodococcus. Appl Biochem Microbiol 45:169–175

    CAS  Google Scholar 

  • Lichtinger T, Reiss G, Benz R (2000) Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis. J Bacteriol 182:764–770

    PubMed  CAS  Google Scholar 

  • Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    PubMed  CAS  Google Scholar 

  • Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75

    PubMed  CAS  Google Scholar 

  • Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117

    PubMed  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    PubMed  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    PubMed  CAS  Google Scholar 

  • Melchior DL (1982) Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transport 17:263–307

    CAS  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    PubMed  CAS  Google Scholar 

  • Mosqueda G, Ramos-Gonzalez M, Ramos J (1999) Toluene metabolism by solvent-tolerant Pseudomonas putida DOT-T1 strain and its role in solvent impermeabilization. Gene 232:69–76

    PubMed  CAS  Google Scholar 

  • Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J (2005) Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382

    PubMed  CAS  Google Scholar 

  • Nielsen LE, Kadavy DR, Rajagopal S, Drijber R, Nickerson KW (2005) Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl Environ Microbiol 71:5171–5176

    PubMed  CAS  Google Scholar 

  • Ohshiro T, Hirata T, Izumi Y (1995) Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl Microbiol Biotechnol 44:249–252

    CAS  Google Scholar 

  • Osborne SJ, Leaver J, Turner MK, Dunnill P (1990) Correlation of biocatalytic activity in an organic/aqueous two-liquid phase system with solvent concentration in the cell membrane. Enz Microbiol Technol 12:281–291

    CAS  Google Scholar 

  • Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379

    PubMed  CAS  Google Scholar 

  • Patel SB, Kilbane JJ, Webster DA (1997) Biodesulphurisation of dibenzothiophene in hydrophobic media by Rhodococcus sp. strain IGTS8. J Chem Technol Biotechnol 69:100–106

    CAS  Google Scholar 

  • Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636

    PubMed  CAS  Google Scholar 

  • Pini F, Grossi C, Nereo S, Michaud L, Giudice AL, Bruni V, Baldi F, Fani R (2007) Molecular and physiological characterisation of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). Eur J Soil Biol 43:368–379

    CAS  Google Scholar 

  • Poole K (2008) Bacterial multidrug efflux pumps serve other functions. Microbe 3:179–185

    Google Scholar 

  • Prieto MB, Hidalgo A, Rodriguez-Fernandez C, Serra JL, Llama MJ (2002) Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactorwith clarifier. Appl Microbiol Biotechnol 58:853–859

    PubMed  CAS  Google Scholar 

  • Pucci OH, Bak MA, Peressutti SR, Klein I, Hartig C, Alvarez HM, Wunsche L (2000) Influence of crude oil contamination on the bacterial community of semiarid soils of Patagonia (Argentina). Acta Biotechnol 20:129–146

    CAS  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    PubMed  CAS  Google Scholar 

  • Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701

    PubMed  CAS  Google Scholar 

  • Rodgers RP, Blumer EN, Emmett MR, Marshall AG (2000) Efficacy of bacterial bioremediation: demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 34:535–540

    CAS  Google Scholar 

  • Rubashko GE, Kolomytseva MP, Golovleva LA (2006) Improvement of the process of fluorene degradation by Rhodococcus rhodochrous strain 172. Appl Biochem Microbiol 42:396–398

    CAS  Google Scholar 

  • Russell NJ (1988) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol II. Academic Press, London, pp 279–365

    Google Scholar 

  • Russell AD (1995) Mechanisms of bacterial resistance to biocides. Int Biodeter Biodegradation 36:247–265

    CAS  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    PubMed  CAS  Google Scholar 

  • Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198

    PubMed  CAS  Google Scholar 

  • Sikkema J, Weber FJ, Heipieper HJ, de Bont JAM (1994) Cellular toxicity of lipophilic compounds: mechanisms, implications, and adaptations. Biocatalysis 10:113–122

    CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation, a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71:522–525

    PubMed  CAS  Google Scholar 

  • Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027

    PubMed  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    PubMed  CAS  Google Scholar 

  • Sonnleitner B (1998) Dynamic adaptation of microbes. J Biotechnol 65:47–60

    PubMed  CAS  Google Scholar 

  • Stachurski J, Michalek M (1996) The effect of the zeta potential on the stability of a non-polar oil-in-water emulsion. J Colloid Interf Sci 184:433–436

    CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    PubMed  CAS  Google Scholar 

  • Thomassin-Lacroix EJM, Yu ZT, Eriksson M, Reimer KJ, Mohn WW (2001) DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can J Microbiol 47:1107–1115

    PubMed  CAS  Google Scholar 

  • Tsiko IV, Zaitsev GM, Lobanok AG, Salkinoja-Saloneni MS (1999) Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol 65:853–855

    Google Scholar 

  • Urai M, Yoshizaki H, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2007) Structural analysis of an acidic, fatty acid ester-bonded extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342:933–942

    PubMed  CAS  Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    PubMed  Google Scholar 

  • van Oss CJ (1995) Hydrophobicity of biosurfaces – origin, quantitative determination and interaction energies. Colloids Surf B Biointerf 5:91–110

    Google Scholar 

  • Vermuë M, Sikkema J, Verheul A, Bakker R, Tramper J (1993) Toxicity of homologous series of organic solvents for the gram-positive bacteria Arthrobacter and Nocardia sp. and the gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 42(1993):747–758

    PubMed  Google Scholar 

  • Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    PubMed  CAS  Google Scholar 

  • Wang L, Qiao N, Sun FQ, Shao ZZ (2008) Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 12:335–342

    PubMed  CAS  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    PubMed  CAS  Google Scholar 

  • Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    PubMed  CAS  Google Scholar 

  • Weber FJ, Isken S, de Bont JAM (1994) Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology 140:2013–2017

    PubMed  CAS  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    PubMed  CAS  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari D, Labbé D, Greer CW (2002) Prevalence of alkane monooxygenase genes in arctic and antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    PubMed  CAS  Google Scholar 

  • Withell ER (1942) The significance of variation in the shape of the time– survivor curves. J Hyg 42:124–132

    CAS  Google Scholar 

  • Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Ohtake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol 74:761–767

    PubMed  CAS  Google Scholar 

  • Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST, Park YH (2000) Rhodococcus koreensis sp. nov., a 2, 4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201

    PubMed  CAS  Google Scholar 

  • Zhang J, Sun Z, Li Y, Peng X, Li W, Yan Y (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater 163:723–728

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla C. C. R. de Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Carvalho, C.C.C.R. (2010). Adaptation of Rhodococcus to Organic Solvents. In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12937-7_5

Download citation

Publish with us

Policies and ethics