Skip to main content

Engineering Advantages, Challenges and Status of Grass Energy Crops

  • Chapter
  • First Online:
Plant Biotechnology for Sustainable Production of Energy and Co-products

Abstract

High yield with low inputs, resistance to disease, pests and drought, adaptation to a wide range of soils and climates, and biomass composition that is optimized for end use are identified as important traits for cellulosic biomass crops. Current status and future prospects for genetic improvement are reviewed for grass crops, using Miscanthus, switchgrass, sugarcane (or energy cane) and sorghum as examples. In addition, possible approaches for integrating grasses into cellulosic biomass supply systems are discussed. It is concluded that both perennial and annual grasses can play a significant role in providing cellulosic biomass for a wide range of bioenergy applications, and considerable potential exists for genetic improvement of grass crops for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander AG (1985) The energy cane alternative. Sugar series, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Alexander AG (1991) High energy cane. In: Payne JH (ed) Cogeneration in the cane sugar industry. Elsevier, New York, pp 233–242

    Chapter  Google Scholar 

  • Alexandrova KS, Denchev PD, Conger BV (1996a) Micropropagation of switchgrass by node culture. Crop Sci 36:1709–1711

    Article  PubMed  CAS  Google Scholar 

  • Alexandrova KS, Denchev PD, Conger BV (1996b) In vitro development of inflorescences from switchgrass nodal segments. Crop Sci 36:175–178

    Article  Google Scholar 

  • Amaducci S, Monti A, Venturi G (2004) Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Ind Crops Prod 20:111–118

    Article  CAS  Google Scholar 

  • Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41

    Article  Google Scholar 

  • Andersson NJ (1855) Om de med Saccharum beslägtade genera. Öfvers Kungl Vet Akad Förn Stockholm 12:151–167

    Google Scholar 

  • Anonymous (2007) Release of three high fiber sugarcane varieties: L 79-1002, Ho 00-961, and HoCP 91-552. Sugar Bull 85(10):21–26

    Google Scholar 

  • Atienza G, Satovic Z, Petersen K, Dolstra O, Martin A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003a) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor Appl Genet 107:123–129

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003b) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor Appl Genet 107:857–863

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A (2003c) Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132:353–361

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003d) Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breed 122:141–145

    Article  CAS  Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding—prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Baoder JD, Barrier JW (1990) Producing fuels and chemicals from cellulosic crops. In: Janick J, Simon JE (eds) Advances in new crops. Timber, Portland, pp 257–259

    Google Scholar 

  • Basnayake J, Cooper M, Ludlow MM, Henzell RG, Snell PJ (1995) Inheritance of osmotic adjustment to water stress in three grain sorghum crosses. Theor Appl Genet 90:675–682

    Article  Google Scholar 

  • Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650

    Article  Google Scholar 

  • Billa E, Koullas DP, Monties B, Koukios EG (1997) Structure and composition of sweet sorghum stalk components. Ind Crops Prod 6:297–302

    Article  CAS  Google Scholar 

  • Blumenthal JB, Rooney WL, Wang D (2007) Yield and ethanol production in sorghum genotypes. In: Abstracts, Annual Meeting of ASA-CSSA-SSSA, New Orleans, 4–8 November 2007

    Google Scholar 

  • Bourne JK Jr (2007) Green dreams. Natl Geogr October:38–59

    Google Scholar 

  • Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li ZK, Lin YR, Liu SC, Luo LJ, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Bransby DI, Smith HA, Taylor CR, Duffy PA (2005). An interactive budget model for producing and delivering switchgrass to a bioprocessing plant. Ind Biotechnol 1(2):122–125

    Article  Google Scholar 

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers B, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  PubMed  CAS  Google Scholar 

  • Burton GW (1986) Biomass production from herbaceous plant. In: Smith WH (ed) Biomass energy development. Plenum, New York, pp 163–175

    Google Scholar 

  • Cai Q, Aitken KS, Deng HH, Chen XW, Fu C, Jackson PA, McIntyre CL (2005) Verification of the introgression of Erianthus arundinaceus into sugarcane using molecular markers. Plant Breed 124:322–328

    Article  CAS  Google Scholar 

  • Chiang YC, Schaal BA, Chou CH, Huang S, Chiang TY (2003) Contrasting selection modes at the Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot 90:561–570

    Article  PubMed  CAS  Google Scholar 

  • Christian DG, Lamptey JNL, Forde SMD, Plumb RT (1994) First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. Eur J Plant Pathol 100:167–170

    Article  Google Scholar 

  • Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crops Prod 28:320–327

    Article  Google Scholar 

  • Clark J (1981) The inheritance of fermentable carbohydrates in stems of Sorghum bicolor (L.) Moench. PhD. Dissertation, Texas A&M University, College Station, Texas

    Google Scholar 

  • Clifton-Brown J, Chiang YC, Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermeris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294

    Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2000a) Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann Bot 86:191–200

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2000b) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwartz KU (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  • Coombs J (1984) Sugar-cane as an energy crop. Biotechnol Genet Eng Rev 1:311–345

    Google Scholar 

  • Cordeiro GM, Pan YB, Henry RJ (2003) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci 165:181–189

    Article  CAS  Google Scholar 

  • Corn RJ (2009) Heterosis and composition of sweet sorghum. PhD Dissertation, Texas A&M University, College Station, Texas

    Google Scholar 

  • Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in switchgrass. Crop Sci 44: 443–448

    Google Scholar 

  • Dawson L, Boopathy R (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol 98:1695–1699

    Article  PubMed  CAS  Google Scholar 

  • Denchev PD, Conger BV (1994) Plant regeneration from callus cultures of switchgrass. Crop Sci 34:1623–1627

    Article  Google Scholar 

  • Denchev PD, Conger BV (1995) In vitro culture of switchgrass: influence of 2,4-D and picloram in combination with benzyladenine on callus initiation and regeneration. Plant Cell Tissue Organ Cult 40:43–48

    Article  CAS  Google Scholar 

  • Edme SJ, Miller JD, Glaz B, Tai PYP, Comstock JC (2005) Genetic contributions to yield gains in the Florida sugarcane industry across thirty-three years. Crop Sci 45:92–97

    Article  Google Scholar 

  • Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149:337–345

    Article  Google Scholar 

  • Florida Division of Agriculture and Consumer Services (2002) Division of Plant Industry, TRI-OLOGY, vol 41, no. 2, March–April 2002, http://www.doacs.state.fl.us/pi/enpp/02–mar–apr.html

    Google Scholar 

  • Florida Division of Agriculture and Consumer Services (2005) Division of Plant Industry, TRI-OLOGY, vol 44, no. 5, September–October 2005

    Google Scholar 

  • Gams W, Klamer M, O’Donnell K (1999) Fusarium miscanthi sp. nov. from Miscanthus litter. Mycol 91:263–268

    Article  Google Scholar 

  • Gonzalez-Hernandez J, Sarath G, Stein J, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol Plant 45:267–281

    Article  CAS  Google Scholar 

  • Gossmann M (2000) Schadwirkung einer pilzparasitären Rhizombesiedlung und Maßnahmen zur Verbesserung der Austriebs- und Biomasseleistung bei Miscanthus x giganteus Greef et Deu. In: Pude R (ed) Miscanthus—Vom Anbau bis zur Verwertung Miscanthus—Symposium. Beiträge Agrarwissenschaften, Bonn, pp 26–31

    Google Scholar 

  • Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus x giganteus GREEF et DEU. Angew Bot 67:87–90

    Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5

    Article  PubMed  CAS  Google Scholar 

  • Gupta SD, Conger BV (1998) In vitro differentiation of multiple shoot clumps from intact seedlings of switchgrass. In Vitro Cell Dev Biol Plant 34:196–202

    Article  Google Scholar 

  • Gupta SD, Conger BV (1999) Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass. Crop Sci 39:243–247

    Article  Google Scholar 

  • Halbert SE, Remaudiere G (2000) A new oriental Melanaphis species recently introduced in North America [Hemiptera, Aphididae]. Rev Fr Entomol 22:109–117

    Google Scholar 

  • Hallam AI, Anderson C, Buxton DR (2001) Comparative economic analysis of perennial, annual and intercrops for biomass production. Biomass Bioenergy 21:407–424

    Article  Google Scholar 

  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US Biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:1–15

    Article  Google Scholar 

  • Heaton E, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. GCB Bioenergy 1:297–307

    Article  CAS  Google Scholar 

  • Heichel GH (1974) Comparative efficiency of energy use in crop production. Bull Conn Agric Exp Stn New Haven 739:1–26

    Google Scholar 

  • Hernández P, Dorado G, Laurie DA, Martín A, Snape JW (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 102:616–622

    Article  Google Scholar 

  • Hirata M, Hasegawa N, Nogami K, Sonoda T (1999) Use of a young tree plantation for grazing of cattle in southern Kyushu, Japan: 3. Non-destructive estimation of basal area and biomass of Miscanthus sinensis grass plants. Proc Int Rangeland Congr 480–481

    Google Scholar 

  • Hodkinson TR, Renvoize SA, Chase MW (1997) Systematics of Miscanthus. Aspects Appl Biol 49:189–198

    Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627

    Article  PubMed  CAS  Google Scholar 

  • Honda M (1930) Monographia Poacearum Japonicarum, Bambusoides exclusis. J Fac Sci Imperial U Tokyo III Bot HI:484

    Google Scholar 

  • Huggett DAJ, Leather SR, Walters KFA (1999) Suitability of the biomass crop Miscanthus sinensis as a host for the aphids Rhopalosiphum padi (L.) and Rhopalosiphum maidis (F.), and its susceptibility to the plant luteovirus barley yellow dwarf virus. Agric For Entomol 1:143–149

    Article  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305

    Article  CAS  Google Scholar 

  • Jessup R (2009) Development and status of dedicated energy crops in the United States. In Vitro Cell Dev Biol Plant 45:282–290

    Article  Google Scholar 

  • Jezowski S (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crops Prod 27:65–68

    Article  Google Scholar 

  • Jordan WR, Miller FR (1980) Genetic variability in sorghum root systems: implications for drought tolerance. In: Turner PC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 383–399

    Google Scholar 

  • Keng YL (1932) The gross morphology of Andropogoneae. PhD Thesis. George Washington University

    Google Scholar 

  • Kimber C (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederiksen RA (eds) Sorghum. Wiley, New York, pp 3–98

    Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Izawa T, Lin S, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Am Assoc Adv Sci 312:1392–1396

    CAS  Google Scholar 

  • Lam E, Shine J Jr, daSilva J, Lawton M, Bonos S, Martin C, Carrer H, Silva-Filho MC, Glynn N, Helsel Z, Jiong M, Richard EP Jr, Souza G, Ming R (2009) Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy 1:251–255

    Article  CAS  Google Scholar 

  • Lee YN (1964) Taxonomic studies on the genus Miscanthus. 3. Relationship among the section, subsection and species. J Jpn Bot 38:197–205

    Google Scholar 

  • Legendre BL, Burner DM (1995) Biomass production of sugarcane cultivars and early-generation hybrids. Biomass Bioenergy 8:55–61

    Article  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Am Assoc Adv Sci 311:1936–1939

    CAS  Google Scholar 

  • Lo CC, Chen YH, Huang YJ, Shih SC (1986) Recent progress in Miscanthus nobilization program. Proc Int Soc Sugar Cane Technol 19:514–521

    Google Scholar 

  • Loomis RS, Williams WA (1963) Maximum crop productivity: an estimate. Crop Sci 3:67–72

    Article  Google Scholar 

  • Macedo IC, Leal MRLV, da Silva JEAR (2004) Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. Sao Paulo. http://www.unica.com.br/i_pages/files/pdf_ingles.pdf

    Google Scholar 

  • Maiti RK, Rao KE, Raju PS, House LR, Prasada-Rao KE (1984) The glossy trait in sorghum: its characteristics and significance in crop improvement. Field Crops Res 9:279–289

    Article  Google Scholar 

  • Martinez-Reyna JM, Vogel KP (2002) Incompatibility systems in switchgrass. Crop Sci 42:1800–1805

    Article  Google Scholar 

  • Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48:1312–1320

    Article  Google Scholar 

  • McBee GG, Miller FR, Dominy RE, Monk RL (1987) Quality of sorghum biomass for methanogenesis. In: Klass DL (ed) Energy from biomass and waste. Elsevier, London, pp 251–260

    Google Scholar 

  • McCollum FT III, McCuistion K, Bean B (2005) Brown Midrib and photoperiod-sensitive forage sorghums. In: Proceedings of the 2005 Plains Nutrition Council Spring Conference. Publication No. AREC 05-20. Texas A&M University Agricultural Research and Extension Center, Amarillo, TX, pp 36–46

    Google Scholar 

  • McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  • McLaughlin SB, Kiniry JR, Taliaferro CM, de la Torre Ugarte D (2006) Projecting yield and utilization potential of switchgrass as an energy crop. Adv Agron 90:267–297

    Article  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP(R), RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002) Comparative analysis of QTLs affecting plant height and flowering among closely related diploid and polyploid genomes. Genome 45:794–803

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Moore PH, Wu KK, D’Hont A, Tew TL, Mirkov TE, da Silva J, Schnell RJ, Brumbley SM, Lakshmanan P, Jifon J, Rai M, Comstock JC, Glaszmann JC, Paterson AH (2006) Sugarcane improvement through breeding and biotechnology. Plant Breed Rev 27:17–118

    Google Scholar 

  • Missaoui AM, Paterson AH, Bouton JH (2006) Molecular markers for the classification of switchgrass (Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour Crop Evol 53:1291–1302

    Article  CAS  Google Scholar 

  • Monk RL, Miller FR, McBee GG (1984) Sorghum improvement for energy production. Biomass 6:145–385

    Article  Google Scholar 

  • Moore KJ, Boote KJ, Sanderson MA (2004) Physiology and developmental morphology. In: Moser L, Burson B, Sollenberger L (eds) Warm-season (C4) grasses. American Society for Agronomy, Madison, pp 179–216

    Google Scholar 

  • Muchow RC, Spilman MF, Wood WW, Thomas MR (1994) Radiation interception and biomass accumulation in a sugarcane crop under irrigated tropical conditions. Aust J Agric Res 45:3–49

    Article  Google Scholar 

  • Muchow RC, Cooper M, Hammer GL (1996) Characterizing environmental challenges using models. In: Cooper M, Hammer GL, Wallingford UK (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 349–364

    Google Scholar 

  • Mukherjee SK (1950) Search for wild relatives of sugarcane in India. Int Sugar J 52:261–262

    Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Leissner G (1942) A case of increased vitality in sibpollinated later generations of self-fertilized Dactylis glomerata strains. Hereditas 28:222–224

    Google Scholar 

  • Ohwi J (1965) Flora of Japan. Smithsonian Institution, Washington, DC

    Google Scholar 

  • O’Neill NR, Farr DF (1996) Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp. and its anamorphic state Stagonospora sp. Plant Dis 80:980–987

    Article  Google Scholar 

  • Panje RR (1972) The role of Saccharum spontaneum in sugarcane breeding. Proc Int Soc Sugar Cane Technol 14:217–223

    Google Scholar 

  • Panje RR, Babu CN (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25:152–172

    Article  Google Scholar 

  • Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Peterson DG, Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge, TN

    Book  Google Scholar 

  • Pratt LH, Liang C, Shah M, Sun F, Wang HM, St. Patrick R, Gingle AR, Paterson AH, Wing R, Dean R, Klein R, Nguyen HT, Ma HM, Zhao X, Morishige DT, Mullet JE, Cordonnier-Pratt MM (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts, Plant Physiol 139:869–884

    Article  PubMed  Google Scholar 

  • Pude R, Diepenbrock W, Franken H, Greef JM (1996) Impact and causes of winter kills of Miscanthus. Mitt Ges Pflanzenbauwiss (Germany) 9:61–62

    Google Scholar 

  • Richard EP Jr (1999) Management of chopper harvester-generated green cane trash blankets: a new concern for Louisiana. Proc Int Soc Sugar Cane Technol 23:52–62

    Google Scholar 

  • Roach BT (1978) Utilization of Saccharum spontaneum in sugarcane breeding. Proc Int Soc Sugar Cane Technol 16:43–58

    Google Scholar 

  • Rooney WL (2004) Sorghum improvement—integrating traditional and new technology to produce improved genotypes. Adv Agron 83:37–109

    Article  Google Scholar 

  • Rooney WL, Aydin S (1999) The genetic control of a photoperiod sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Article  Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Article  Google Scholar 

  • Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischler CR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:83–93

    Article  CAS  Google Scholar 

  • Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325

    Article  Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613

    Article  PubMed  CAS  Google Scholar 

  • Smart AJ, Moser LE, Vogel KP (2003a) Establishment and seedling growth of big bluestem and switchgrass populations divergently selected for seedling tiller number. Crop Sci 43:1434–1440

    Article  Google Scholar 

  • Smart AJ, Vogel KP, Moser LE, Stroup WW (2003b) Divergent selection for seedling tiller number in big bluestem and switchgrass. Crop Sci 43:1427–1433

    Article  Google Scholar 

  • Smart AJ, Moser LE, Vogel KP (2004) Morphological characteristics of big bluestem and switchgrass plants divergently selected for seedling tiller number. Crop Sci 44:607–613

    Google Scholar 

  • Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  CAS  Google Scholar 

  • Song JZ, Soller M, Genizi A (1999) The full-sib intercross line (FSIL): a QTL mapping design for outcrossing species. Genet Res 73:61–73

    Article  Google Scholar 

  • Subbotin SA, Vierstraete A, De Ley P, Rowe J, Waeyenberge L, Moens M, Vanfleteren JR (2001) Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Mol Phylogenet Evol 21:1–16

    Article  PubMed  CAS  Google Scholar 

  • Taliaferro CM (2002) Breeding and selection of new switchgrass varieties for increased biomass production. Vol ORNL/SUB-02-19XSY162C/01. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Taliaferro CM, Vogel KP, Bouton JH, McLaughlin SB, Tuskan GA (1999) Reproductive characteristics and breeding improvement potential of switchgrass. In: Overend RP, Chonet E (eds) Biomass: a growth opportunity in green energy and value-added products, vol 1. Pergamon, Elsevier, Amsterdam, pp 147–153

    Google Scholar 

  • Teakle DS, Shukla DD, Ford RE (1989) Sugarcane mosaic virus. AAB Descriptions Plant Viruses 5

    Google Scholar 

  • Tew TL (2003) World sugarcane variety census—year 2000. Sugar Cane Int March/April:12–18

    Google Scholar 

  • Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 249–272

    Google Scholar 

  • Thinggaard K (1997) Study of the role of Fusarium in the field establishment problem of Miscanthus. Acta Agric Scand B Plant Soil Sci 47:238–241

    Google Scholar 

  • Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR, Chow EK, Sarath G (2005) Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111:956–964

    Article  PubMed  Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  PubMed  CAS  Google Scholar 

  • Viator RP, Johnson RM, Grimm CC, Richard EP Jr (2006) Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron J 98:1526–1531

    Article  Google Scholar 

  • Viator RP, Johnson RM, Richard EP Jr (2009a) Mechanical removal and incorporation of post-harvest residue effects on sugarcane ratoon yields. Sugar Cane Int 24:149–152

    Google Scholar 

  • Viator RP, Johnson RM, Boykin DL, Richard EP Jr (2009b) Sugarcane post-harvest residue management in the temperate climate of Louisiana. Crop Sci 49:1023–1028

    Article  Google Scholar 

  • Vogel KP (2004) Switchgrass. In: Moser L, Burson B, Sollenberger L (eds) Warm-season (C4) grasses. Am Soc Agron, Madison, pp 561–588

    Google Scholar 

  • Vogel KP, Mitchell RB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48:2159–2164

    Article  Google Scholar 

  • West MAL, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, St Clair DA, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Zhao R, Bean SR, Seib PA, McLaren JS, Madl RL, Tuinstra MR, Lenz MC, Wang D (2007) Factors impacting ethanol production from grain sorghum in the dry-grind process. Cereal Chem 84:130–136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors from Mendel acknowledge their Mendel and Tinplant colleagues for helpful discussions and insights, particularly Katrin Jakob, Erik Sacks, Fasong Zhou, Martin Deuter and Cora Münnich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Bransby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bransby, D.I. et al. (2010). Engineering Advantages, Challenges and Status of Grass Energy Crops. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_6

Download citation

Publish with us

Policies and ethics