Skip to main content

Introduction

  • Chapter
  • First Online:
LDA Application Methods

Part of the book series: Experimental Fluid Mechanics ((FLUID))

Abstract

In industrial applications as well as in scientific research, fluid flows are often utilized to serve diverse functions. The associated physical processes such as those in thermal and fluid engineering, as well as in chemical and biological process controls, constantly require accurate quantifications and optimizations, especially as concerns flow dynamics. The complex flows encountered in diverse industrial applications usually comprise various varieties of turbulent flows, three-dimensional and non-stationary flows, flows with separation and relative eddies, multiphase flows and so forth. To some extent it even deals with non-Newtonian fluid flows. Depending on the application areas and process specifications, most flows are further specified by flow rate, Reynolds number, velocity distribution, turbulence intensity and other relevant flow dynamical parameters. For the flows in heat exchangers, for instance, both the Reynolds number and the related flow state are crucial for the thermal efficiency of the apparatus. In treating flows in aerodynamics the most relevant flow dynamical parameters are directly related to the turbulent boundary layers. Obviously each engineering flow has individual specifications with corresponding flow dynamical parameters. Amongst all of these flows, the flow turbulence acts as the most important and complex phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Yeh H, Cummins H (1964) Localized flow measurements with an He-Ne laser spectrometer. App Phys Lett 4:176

    Article  Google Scholar 

  • Albrecht H, Borys M, Damaschke N, Tropea C (2003) Laser Doppler and phase Doppler measurement techniques. Springer, Berlin

    Google Scholar 

  • Miles PC, Witze PO (1994): Fringe field quantification in an LDA probe volume by use of a magnified image. J Exp Fluids 16:330–335

    Google Scholar 

  • Boadway J, Karahan E (1981) Correction of laser Doppler anemometer readings for refraction at cylindrical interfaces. DISA Inf 26:4–6

    Google Scholar 

  • Durst F, Kikura H, Lekakis I, Jovanovic J, Ye Q (1996) Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows. J Exp Fluids 20:417–428

    Article  Google Scholar 

  • Zhang Zh (1999) Null-Korrelationsmethode zur Bestimmung der anisotropen Strömungsturbulenz. Lasermethoden in der Strömungsmesstechnik. 7. GALA-Fachtagung, Lasermethoden in der Strömungsmesstechnik, St-Louis, Frankreich, pp 7.1–7.6

    Google Scholar 

  • Zhang Zh, Eisele K, Hirt F (1996) Methode zur Bestimmung der Turbulenzgrößen in instationären Strömungen aus LDA-Messungen. 5. GALA-Fachtagung, Lasermethoden in der Strömungsmesstechnik, Berlin, Deutschland, pp 10.1–10.4

    Google Scholar 

  • Zhang Zh, Eisele K, Hirt F (1997) The influence of phase-averaging window size on the determination of turbulence quantities in unsteady turbulent flows. J Exp Fluids 22:265–267

    Article  Google Scholar 

  • McLaughlin DK, Tiederman WG (1973) Biasing correction for individual realization of laser anemometer measurements in turbulent flows. Phys Fluids 16(12):2082–2088

    Article  Google Scholar 

  • Zhang Zh (2002) Velocity bias in LDA measurements and its dependence on the flow turbulence. J Flow Meas Instrum 13:63–68

    Article  Google Scholar 

  • Hanson S (1973) Broadening of the measured frequency spectrum in a differential laser anemometer due to interference plane gradients. J Phys D Appl Phys 6:164–171

    Article  Google Scholar 

  • Miles PC, Witze PO (1996): Evaluation of the Gaussian beam model for prediction of LDV fringe fields. 8th int. Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, p 40.1

    Google Scholar 

  • Zhang Zh, Eisele K (1998b) Further considerations of the astigmatism error associated with off-axis alignment of an LDA-probe. J Exp Fluids 24:83–89

    Article  Google Scholar 

  • Zhang Zh, Eisele K (1997) On the broadening of the flow turbulence due to fringe distortion in LDA measurement volumes. Proceedings of the 7th Int. Conference Laser Anemometry, Advances and Applications, Karlsruhe, Germany, pp 351–357

    Google Scholar 

  • Hanson S (1975) Visualization of alignment errors and heterodyning constraints in laser Doppler velocimeters. The Accuracy of Flow Measurements by Laser Doppler Methods, Proceedings of the LDA-Symposium, Copenhagen, Denmark, pp 176–182

    Google Scholar 

  • Zhang Zh (2000) Zur Bestimmung des “Biasing Error” in LDA-Messungen von komplexen turbulenten Strömungen. 8. GALA-Fachtagung, Lasermethoden in der Strömungsmesstechnik, Freising/München, Deutschland, pp 16.1–16.8

    Google Scholar 

  • Buchhave P (1975) Biasing errors in individual particle measurements with the LDA-counter signal processor. The Accuracy of Flow Measurements by Laser Doppler Methods, Proceedings of the LDA-Symposium, Copenhagen, Denmark, pp 258–278

    Google Scholar 

  • Zhang Zh, Parkinson E (2001) Strömungsuntersuchungen am Freistrahl der Pelton-Turbine und Anpassen des LDA-Verfahrens. 9. GALA-Fachtagung, Lasermethoden in der Strömungsmesstechnik, Winterthur, Schweiz, pp 43.1–43.7

    Google Scholar 

  • Zhang Zh, Eisele K (1998c) On the overestimation of the flow turbulence due to fringe distortion in LDA measurement volumes. J Exp Fluids 25:371–374

    Article  Google Scholar 

  • Jakoby R, Willmann M, Kim S, Dullenkopf K, Wittig S (1996) LDA-Messungen in rotierenden Bezugssystemen: Einfluss von Geschwindigkeitsgradienten auf die Bestimmung des Turbulenzgrads. 5. GALA-Fachtagung, Berlin, Deutschland, pp 41.1–41.10

    Google Scholar 

  • Zhang Zh (2004a) Optical guidelines and signal quality for LDA applications in circular pipes. J Exp Fluids 37:29–39

    Google Scholar 

  • Zhang Zh (2004b) LDA-Methoden in Messungen aller drei Geschwindigkeitskomponenten in Rohrströmungen. 12. GALA-Fachtagung, Lasermethoden in der Strömungsmesstechnik, Karlsruhe, Deutschland, pp 8.1–8.8

    Google Scholar 

  • Zhang Zh, Eisele K (1995a) Off-axis alignment of an LDA-probe and the effect of astigmatism on the measurements. J Exp Fluids 19:89–94

    Google Scholar 

  • Zhang Zh, Eisele K (1995b) Einfluss des Astigmatismus auf LDA-Messungen. 4. GALA-Fachtagung, Lasermethoden in der Strömungsmesstechnik, Rostock, Deutschland, pp 45.1–45.6

    Google Scholar 

  • Nobach H (1998) Verarbeitung stochastisch abgetasteter Signale – Anwendung in der Laser-Doppler-Anemometrie. Diss., Univ. Rostock, Shaker Verlag, Aachen

    Google Scholar 

  • Durst F, Fischer M, Jovanovic J, Kikura H (1998) Methods to set up and investigate low Reynolds number, fully developed turbulent plane channel flows. ASME J Fluid Eng 120:496–503

    Article  Google Scholar 

  • Zhang Zh, Eisele K (1996a) Neue Erkenntnisse über den Einfluss des Astigmatismus auf LDA-Messungen. 5. GALA-Fachtagung, Lasermethoden in der Strömungsmesstechnik, Berlin, Deutschland, pp 54.1–54.7

    Google Scholar 

  • Zhang Zh, Parkinson E (2002) LDA application and the dual-measurement-method in experimental investigations of the free surface jet at a model nozzle of a Pelton turbine. 11th. Int. Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, p 2

    Google Scholar 

  • Zhang Zh (2005) Dual-Measurement-Method and its extension for accurately resolving the secondary flows in LDA applications. J Flow Meas Instrum 16:57–62

    Article  Google Scholar 

  • Zhang Zh, Eisele K (1996b) The effect of astigmatism due to beam refractions in the formation of the measurement volume in LDA measurements. J Exp Fluids 20:466–471

    Google Scholar 

  • Erdmann JC, Tropea C (1981) Turbulence induced statistical bias in laser anemometry. Proceedings of the 7th Symposium on Turbulence, University of Missouri-Rolla, USA

    Google Scholar 

  • Durst F, Melling A, Whitelaw JH (1981) Principles and practice of laser-Doppler anemometry. 2nd edn, Academic Press, London

    Google Scholar 

  • Zhang Zh (1995) Einfluss des Astigmatismus auf Laser Doppler Messungen. Sulzer Innotec Bericht, Nr. STT. TB95.022, Winterthur, Schweiz

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengji Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Z. (2010). Introduction. In: LDA Application Methods. Experimental Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13514-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13514-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13513-2

  • Online ISBN: 978-3-642-13514-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics