Skip to main content

Pivot and Loop Complementation on Graphs and Set Systems

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6108))

Abstract

We study the interplay between principal pivot transform (pivot) and loop complementation for graphs. This is done by generalizing loop complementation (in addition to pivot) to set systems. We show that the operations together, when restricted to single vertices, form the permutation group S 3. This leads, e.g., to a normal form for sequences of pivots and loop complementation on graphs. The results have consequences for the operations of local complementation and edge complementation on simple graphs: an alternative proof of a classic result involving local and edge complementation is obtained, and the effect of sequences of local complementations on simple graphs is characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its Applications 377, 11–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. In: SODA 2000: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 237–245. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  3. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. Journal of Combinatorial Theory, Series B 92(2), 199–233 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouchet, A.: Representability of Δ-matroids. In: Proc. 6th Hungarian Colloquium of Combinatorics, Colloquia Mathematica Societatis János Bolyai, vol. 52, pp. 167–182. North-Holland, Amsterdam (1987)

    Google Scholar 

  5. Bouchet, A.: Graphic presentations of isotropic systems. Journal of Combinatorial Theory, Series B 45(1), 58–76 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bouchet, A., Duchamp, A.: Representability of Δ-matroids over \(\emph{GF}(2)\). Linear Algebra and its Applications 146, 67–78 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brijder, R., Hoogeboom, H.J.: The group structure of pivot and loop complementation on graphs and set systems, arXiv:0909.4004 (2009)

    Google Scholar 

  8. Brijder, R., Hoogeboom, H.J.: Maximal pivots on graphs with an application to gene assembly, arXiv:0909.3789 (submitted 2009)

    Google Scholar 

  9. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  10. de Fraysseix, H.: Local complementation and interlacement graphs. Discrete Mathematics 33(1), 29–35 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local clifford transformations on graph states. Physical Review A 69(2), 022316 (2004)

    Article  Google Scholar 

  12. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation in Living Cells – Gene Assembly in Ciliates. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. Geelen, J.F.: A generalization of Tutte’s characterization of totally unimodular matrices. Journal of Combinatorial Theory, Series B 70, 101–117 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  15. Oum, S.: Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B 95(1), 79–100 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tsatsomeros, M.J.: Principal pivot transforms: properties and applications. Linear Algebra and its Applications 307(1-3), 151–165 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tucker, A.W.: A combinatorial equivalence of matrices. In: Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics, vol. X, pp. 129–140. American Mathematical Society, Providence (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brijder, R., Hoogeboom, H.J. (2010). Pivot and Loop Complementation on Graphs and Set Systems. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds) Theory and Applications of Models of Computation. TAMC 2010. Lecture Notes in Computer Science, vol 6108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13562-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13562-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13561-3

  • Online ISBN: 978-3-642-13562-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics