Skip to main content

Electronic Defect States

  • Chapter
  • First Online:
The Physics of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

One cm3 of a semiconductor contains about 5 × 1022 atoms. It is practically impossible to achieve perfect purity. Typical low concentrations of impurity atoms are in the 1012–1013 cm−3 regime. Such a concentration corresponds to a purity of 10−10, corresponding to about one alien in the world’s human population. In the beginning of semiconductor research the semiconductors were so impure that the actual semiconducting properties could only be used inefficiently. Nowadays, thanks to large improvements in high-purity chemistry, the most common semiconductors, in particular silicon, can be made so pure that the residual impurity concentration plays no role in the physical properties. However, the most important technological step for semiconductors is doping, the controlled incorporation of impurities, in order to manage the semiconductor’s conductivity. Typical impurity concentrations used in doping are 1015–1020 cm−3. A milestone in the understanding of doping and the spreading of semiconductor technology was the 1950 textbook by Shockley [372].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. B¨adeker, ¨Uber die elektrische Leitf¨ahigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen, Ann. Physik 327, 749–66 (1907), Habilitationsschrift, Universit¨at Leipzig

    Google Scholar 

  2. H.H. von Baumbach, C. Wagner, Die elektrische Leitf¨ahigkeit von Zinkoxyd und Cadmiumoxyd. Z. Phys. Chem. B 22, 199–211 (1933)

    Google Scholar 

  3. M.T. Yin, M.L. Cohen, Phys. Rev. Lett. 45, 1004 (1980)

    Article  ADS  Google Scholar 

  4. J.C. Phillips, J.A. Van Vechten, Phys. Rev. Lett. 23, 1115 (1969)

    Article  ADS  Google Scholar 

  5. S. Takeuchi, K. Suzuki, Phys. Stat. Sol. (A) 171, 99 (1999)

    Article  ADS  Google Scholar 

  6. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory, Application to the Physics of Condensed Matter (Springer, Berlin, 2008)

    MATH  Google Scholar 

  7. M. Lannoo, J. Bourgoin, Point Defects in Semiconductors I (Springer, Berlin, 1981)

    Google Scholar 

  8. H.R. Vydyanath, J.S. Lorenzo, F.A. Kr¨oger, J. Appl. Phys. 49, 5928 (1978)

    Article  ADS  Google Scholar 

  9. P.R.C. Kent, A. Zunger, Phys. Rev. B 64, 115208 (2001)

    Article  ADS  Google Scholar 

  10. W. Pauli 1931 in a letter from New York to R. Peierls, in: Pauli, Briefwechsel II, 1985, Nr. 287, p. 94; cf. G. Busch, Condens. Matter News 2, 15 (1993). Lateron Pauli complains to Peierls ”. . . das Sie immer noch nicht von der Physik des festen K¨orpers losgekommen sind.” (in: Pauli an Peierls, 22. Mai 1933, in: Pauli, Briefwechsel II, 1985, Nr. 310, p. 163)

    Google Scholar 

  11. W. Shockley, Electrons and Holes in Semiconductors (D. van Nostrand, New York, 1950)

    Google Scholar 

  12. X. Aymerich-Humet, F. Serra-Mestres, J. Mill´an, Solid State Electron. 24, 981 (1981)

    Article  ADS  Google Scholar 

  13. K. Unger, Phys. Stat. Sol. (A) 149, K141 (1988)

    Article  ADS  Google Scholar 

  14. J. McDougall, E.C. Stoner, Philos. Trans. Roy. Soc. London 237, 67 (1938)

    MATH  Google Scholar 

  15. A.J. MacLeod, ACM Trans. Math. Softw. 24, 1 (1998)

    Article  MATH  Google Scholar 

  16. A.B. Sproul, M.A. Green, J. Zhao, Appl. Phys. Lett. 57, 255 (1990)

    Article  ADS  Google Scholar 

  17. A.B. Sproul, M.A. Green, J. Appl. Phys. 73, 1214 (1993)

    Article  ADS  Google Scholar 

  18. M.A. Green, J. Appl. Phys. 67, 2944 (1990)

    Article  ADS  Google Scholar 

  19. K. Misiakos, D. Tsamakis, J. Appl. Phys. 74, 3293 (1993)

    Article  ADS  Google Scholar 

  20. B. Gudden, Sitzungsber. Phys.-Med. Soz. Erlangen 62, 289 (1930)

    Google Scholar 

  21. E.F. Schubert, Doping in III–V Semiconductors (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  22. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley & Sons, New York, 1981)

    Google Scholar 

  23. W. Kohn, J.M. Luttinger, Phys. Rev. 98, 915 (1955)

    Article  ADS  Google Scholar 

  24. G. Feher, D.K. Wilson, E.A. Gere, Phys. Rev. Lett. 3, 25 (1959)

    Article  ADS  Google Scholar 

  25. R. Kalish, The search for donors in diamond. Diamond Relat. Mater. 10, 1749–55 (2001)

    Article  Google Scholar 

  26. V.A. Karasyuk, D.G.S. Beckett, M.K. Nissen, A. Villemarie, T.W. Steiner, M.L.W. Thewalt, Phys. Rev. B 49, 16381 (1994)

    Article  ADS  Google Scholar 

  27. U. Kaufmann, J. Schneider, Adv. Electron. Electr. Phys. 58, 81 (1982)

    Article  Google Scholar 

  28. W. G¨otz, N.M. Johnson, C. Chen, H. Liu, C. Kuo, W. Imler, Appl. Phys. Lett. 68, 3144 (1996)

    Article  ADS  Google Scholar 

  29. A.J. Ptak, L.J. Holbert, L. Ting, C.H. Swartz, M. Moldovan, N.C. Giles, T.H. Myersa, P. Van Lierde, C. Tian, R.A. Hockett, S. Mitha, A.E. Wickenden, D.D. Koleske, R.L. Henry, Appl. Phys. Lett. 79, 2740 (2001)

    Article  ADS  Google Scholar 

  30. S. Teitler, R.F. Wallis, J. Phys. Chem. Solids 16, 71 (1960)

    Article  ADS  Google Scholar 

  31. B. ˇanti´, Superlatt. Microstruct. 36, 445 (2004)

    Google Scholar 

  32. R.M. Dickstein, S.L. Titcomb, R.L. Anderson, J. Appl. Phys. 66, 2437 (1989)

    Article  ADS  Google Scholar 

  33. J.S. Blakemore, Phys. Rev. 163, 809 (1967)

    Article  ADS  Google Scholar 

  34. H.B. Bebb, Phys. Rev. B 5, 4201 (1972)

    Article  ADS  Google Scholar 

  35. E.M. Conwell, Phys. Rev. 99, 1195 (1955)

    Article  ADS  Google Scholar 

  36. A.T. Collins, A.W.S. Williams, J. Phys. C: Solid State Phys. 4, 1789 (1971)

    Article  ADS  Google Scholar 

  37. K. Thonke, The boron acceptor in diamond. Semicond. Sci. Technol. 18, S20–S26 (2003)

    Article  ADS  Google Scholar 

  38. G.W. Brown, H. Grube, M.E. Hawley, Phys. Rev. B 70, 121301 (2004)

    Article  ADS  Google Scholar 

  39. W. Kohn, Solid State Phys. 5, 257 (1957)

    Article  Google Scholar 

  40. K.Ya. Shtivel’man, R.G. Useinov, Russian Phys. J. 17, 1439 (1974)

    Google Scholar 

  41. H. Alves, Defects, Doping and Compensation in Wide Bandgap Semiconductors, PhD Thesis, Universit¨at Giessen, 2003

    Google Scholar 

  42. S. Fischer, C. Wetzel, E.E. Haller, B.K. Meyer, Appl. Phys. Lett. 67, 1298 (1995)

    Article  ADS  Google Scholar 

  43. D.C. Look, Electrical Characterization of GaAs Materials and Devices (John Wiley & Sons, New York, 1989)

    Google Scholar 

  44. E.E. Haller, W.L. Hansen, F.S. Goulding, Adv. Phys. 30, 93–138 (1981)

    Article  ADS  Google Scholar 

  45. M.B. Johnson, O. Albrektsen, R.M. Feenstra, H.W.M. Salemink, Appl. Phys. Lett. 63, 2923 (1993) and Erratum Appl. Phys. Lett. 64, 1454 (1994)

    Article  ADS  Google Scholar 

  46. A.M. Yakunin, A.Yu. Silov, P.M. Koenraad, J.H. Wolter, W. Van Roy, J. De Boeck, J.-M. Tang, M.E. Flatt´e, Phys. Rev. Lett. 92, 216806 (2004)

    Article  ADS  Google Scholar 

  47. J.-M. Tang, M. Flatt´e, Phys. Rev. Lett. 92, 047201 (2004)

    Article  ADS  Google Scholar 

  48. J.S. Blakemore, Semiconductor Statistics (Pergamon Press, Oxford, 1962)

    Google Scholar 

  49. N.B. Hannay (ed.), Semiconductors (Reinhold Publ. Corp., New York, 1959)

    Google Scholar 

  50. E. Ziegler, W. Siegel, Crystal Res. & Technol. 17, 1015 (1982)

    Article  Google Scholar 

  51. H.-J. Hoffmann, Appl. Phys. 19, 307 (1979)

    Article  ADS  Google Scholar 

  52. G. Leibiger: AIIIBV-Mischkristallbildung mit Stickstoff und Bor, PhD Thesis, Universit¨at Leipzig, 2003

    Google Scholar 

  53. M. Tao, J. Appl. Phys. 87, 3554 (2000)

    Article  ADS  Google Scholar 

  54. G. Weyer, J.W. Peterson, S. Damgaard, H.L. Nielsen, J. Heinemeier, Phys. Rev. Lett. 44, 155 (1980)

    Article  ADS  Google Scholar 

  55. E. Antoncik, B.L. Gu, Hyperfine Interact. 14, 257 (1983)

    Article  ADS  Google Scholar 

  56. R. Noufi, R. Axton, C. Herrington, S.K. Deb, Appl. Phys. Lett. 45, 668 (1994)

    Article  ADS  Google Scholar 

  57. N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1990)

    Google Scholar 

  58. V.I. Fistul, Highly Doped Semiconductors (Plenum, New York, 1969)

    Google Scholar 

  59. P.P. Debye, E.M. Conwell, Phys. Rev. 93, 693 (1954)

    Article  ADS  Google Scholar 

  60. B.L. Crowder, W.N. Hammer, Phys. Rev. 150, 541 (1966)

    Article  ADS  Google Scholar 

  61. G.L. Pearson, J. Bardeen, Phys. Rev. 75, 865 (1949)

    Article  ADS  Google Scholar 

  62. G.E. Stillman, L.W. Cook, T.J. Roth, T.S. Low, B.J. Skromme, in GaInAsP Alloy Semiconductors, ed. by T.P. Pearsall (John Wiley & Sons, New York, 1982), p. 121

    Google Scholar 

  63. H. Kato, A. Ogawa, H. Kotani, M. Sano, T. Yao, MRS Fall Meeting 2006, Boston, Symp. K (’Zinc Oxide and Related Materials’), K5.6 (2006)

    Google Scholar 

  64. M.L. Young, S.J. Bass, J. Phys. D: Appl. Phys. 4, 995 (1971)

    Article  ADS  Google Scholar 

  65. H.C. Casey, Jr., F. Ermanis, K.B. Wolfstirn, J. Appl. Phys. 40, 2945 (1969)

    Article  ADS  Google Scholar 

  66. K. Pakula, M.Wojdak, M. Palczewska, B. Suchanek, J.M. Baranowski, MRS Internet J. Nitride Semicond. Res. 3, 34 (1998)

    Google Scholar 

  67. G.R. James, A.W.R. Leitch, F. Omn`es, M.C. Wagener, M. Leroux, J. Appl. Phys. 96, 1047 (2004)

    Article  ADS  Google Scholar 

  68. M. Brandt, H. von Wenckstern, C. Meinecke, T. Butz, H. Hochmuth, M. Lorenz, M. Grundmann, J. Vac. Sci. Technol. B 27 (2009)

    Google Scholar 

  69. M.C. Wu, Y.K. Su, K.Y. Cheng, C.Y. Chang, Solid State Electron. 31, 251 (1988)

    Article  ADS  Google Scholar 

  70. M. Ogawa, T. Baba, Jpn. J. Appl. Phys. 24, L572 (1985)

    Article  ADS  Google Scholar 

  71. T. Yamada, E. Tokumitsu, K. Saito, T. Akatsuka, M. Miyauchi, M. Konagai, K. Takahashi, J. Cryst. Growth 95, 145 (1989)

    Article  ADS  Google Scholar 

  72. J.L. Lievin, F. Alexandre, C. Dubon-Chevaillier, in Properties of Impurity States in Superlattice Semiconductors, ed. by C.Y. Fong, I.P. Batra, S. Ciraci (Plenum, New York, 1988), p. 19

    Google Scholar 

  73. J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II (Springer, Berlin, 1983)

    Google Scholar 

  74. K. Lischka, Deep level defects in narrow gap semiconductors. Phys. Stat. Sol. (B) 133, 17–46 (1986)

    Article  ADS  Google Scholar 

  75. J.-M. Spaeth, H. Overhof, Point Defects in Semiconductors and Insulators, Determination of Atomic and Electronic Structure from Paramagnetic Hyperfine Interactions (Springer, Berlin, 2003)

    Google Scholar 

  76. P.T. Landsberg, J. Phys. D: Appl. Phys. 10, 2467 (1977)

    Article  ADS  Google Scholar 

  77. R. Kassing, L. Cohausz, P. van Staa, W. Mackert, H.J. Hoffman, Appl. Phys. A 34, 41 (1984)

    Article  ADS  Google Scholar 

  78. H.H. Woodbury, G.W. Ludwig, Phys. Rev. 117, 102 (1960)

    Article  ADS  Google Scholar 

  79. S. Greulich-Weber, J.R. Niklas, E.R. Weber, J.M. Spaeth, Phys. Rev. B 30, 6292 (1984)

    Article  ADS  Google Scholar 

  80. H. Feichtinger, J. Waltl, A. Gschwandtner, Solid State Commun. 27, 867 (1978)

    Article  ADS  Google Scholar 

  81. Y.H. Lee, R.L. Kleinhenz, J.W. Corbett, Appl. Phys. Lett. 31, 142 (1977)

    Article  ADS  Google Scholar 

  82. H.G. Grimmeiss, E. Janz´en, H. Ennen, O. Schirmer, J. Schneider, R.W¨orner, C. Holm, E. Sirtl, P. Wagner, Phys. Rev. B 24, 4571 (1981)

    Article  ADS  Google Scholar 

  83. H.G. Grimmeiss, L. Montelius, K. Larsson, Phys. Rev. B 37, 6916 (1988)

    Article  ADS  Google Scholar 

  84. R.K. Franks, J.B. Robertson, Solid State Commun. 5, 479 (1967)

    Article  ADS  Google Scholar 

  85. U. Kaufmann, J. Schneider, R.W¨orner, T.A. Kennedy, N.D.Wilsey, J. Phys. C: Solid State Phys. 14, L951 (1981)

    Article  ADS  Google Scholar 

  86. R.J. Wagner, J.J. Krebs, G.H. Strauss, A.M. White, Solid State Commun. 36, 15 (1980)

    Article  ADS  Google Scholar 

  87. R.O. Carlson, Phys. Rev. 108, 1390 (1957)

    Article  ADS  Google Scholar 

  88. W.W. Tyler, H.H. Woodbury, Phys. Rev. 102, 647 (1956)

    Article  ADS  Google Scholar 

  89. M.D. Sturge, The Jahn-Teller effect in solids. Solid State Phys. 20, 92 (1967)

    Google Scholar 

  90. G.D. Watkins, Adv. Solid State Phys. (Festk¨orperprobleme) 24, 163 (1984)

    Article  Google Scholar 

  91. G.D. Watkins, J.R. Troxell, Phys. Rev. Lett. 44, 593 (1980)

    Article  ADS  Google Scholar 

  92. P.W. Anderson, Phys. Rev. Lett. 34, 953 (1975)

    Article  ADS  Google Scholar 

  93. R.D. Harris, J.L. Newton, G.D. Watkins, Phys. Rev. B 36, 1094 (1987)

    Article  ADS  Google Scholar 

  94. G.A. Baraff, E.O. Kane, M. Schl¨uter, Phys. Rev. B 21, 5662 (1980)

    Article  ADS  Google Scholar 

  95. M. Sprenger, S.H. Muller, E.G. Sieverts, C.A.J. Ammerlaan, Phys. Rev. B 35, 1566 (1987)

    Article  ADS  Google Scholar 

  96. A.F. Wright, Phys. Rev. B 74, 165116 (2006)

    Article  ADS  Google Scholar 

  97. A. Fazzio, A. Janotti, A.J.R. da Silva, Phys. Rev. B 61, R2401 (2000)

    Article  ADS  Google Scholar 

  98. P.M. Mooney, N.S. Caswell, S.L. Wright, J. Appl. Phys. 62, 4786 (1987)

    Article  ADS  Google Scholar 

  99. P.M. Mooney, J. Appl. Phys. 67, R1 (1990)

    Article  ADS  Google Scholar 

  100. J.C. Bourgoin (ed.), Physics of DX Centers in GaAs Alloys, (Sci-Tech, Lake Isabella, CA, 1990)

    Google Scholar 

  101. D.V. Lang, R.A. Logan, Phys. Rev. Lett. 39, 635 (1977)

    Article  ADS  Google Scholar 

  102. J. M¨akinen, T. Laine, K. Saarinen, P. Hautoj¨arvi, C. Corbel, V.M. Araksinen, J. Nagle, Phys. Rev. B 52, 4870 (1995)

    Article  ADS  Google Scholar 

  103. J. Dabrowski, M. Scheffler, Phys. Rev. B 40, 10391 (1989)

    Article  ADS  Google Scholar 

  104. J.S. Blakemore, J. Appl. Phys. 53(10), R123-R181 (1982)

    Article  ADS  Google Scholar 

  105. A. Rohatgi, R.H. Hopkins, J.R. Davis, R.B. Campbell, H.C. Mollenkopf, J.R. McCormick, Solid State Electron. 23, 1185 (1980)

    Article  ADS  Google Scholar 

  106. G.M. Martin, Appl. Phys. Lett. 39, 747 (1981)

    Article  ADS  Google Scholar 

  107. D.C. Look, J. Appl. Phys. 48, 5141 (1977)

    Article  ADS  Google Scholar 

  108. O. Mizuno, H. Watanabe, Electron. Lett. 11, 118 (1975)

    Article  Google Scholar 

  109. Y. Toudic, B. Lambert, R. Coquille, G. Grandpierre,M. Gauneau, Semicond. Sci. Technol. 3 464 (1988)

    Google Scholar 

  110. R.P. Tapster, M.S. Skolnick, R.G. Humphreys, P.J. Dean, B. Cockayne, W.T. MacEwan, J. Phys. C: Solid State Phys. 14, 5069 (1981)

    Article  ADS  Google Scholar 

  111. A. Juhl, A. Hoffmann, D. Bimberg, H.J. Schulz, Appl. Phys. Lett. 50, 1292 (1987)

    Article  ADS  Google Scholar 

  112. A.M. Hennel, Transition metals in III/V compounds. Semicond. Semimet. 38, 189 (1993)

    Article  Google Scholar 

  113. H.J. Schulz, J. Cryst. Growth 59, 65 (1982)

    Article  ADS  Google Scholar 

  114. J. Cheng, S.R. Forrest, B. Tell, D. Wilt, B. Schwartz, P.D. Wright, J. Appl. Phys. 58, 1780 (1985)

    Article  ADS  Google Scholar 

  115. D.G. Knight, B. Watt, R. Bruce, D.A. Clark, in Semi-Insulating III–V Materials, ed. by A. Milnes, C.J. Miner (Bristol, 1990), p. 83

    Google Scholar 

  116. D. S¨oderstr¨om, G. Fornuto, A. Buccieri, Proc. 10th European Workshop on MOVPE, Lecce (Italy), PS.IV.01, 2003

    Google Scholar 

  117. A. Dadgar, O. Stenzel, A. N¨aser, M. Zafar Iqbal, D. Bimberg, H. Schumann, Appl. Phys. Lett. 73, 3878 (1998)

    Article  ADS  Google Scholar 

  118. R.A. Faulkner, Phys. Rev. 175, 991 (1968)

    Article  ADS  Google Scholar 

  119. P.J. Dean, J. Lumin. 1–2, 398 (1970)

    Google Scholar 

  120. R. Schwabe, W. Seifert, F. Bugge, R. Bindemann, V.F. Agekyan, S.V. Pogarev, Solid State Commun. 55, 167–173 (1985)

    Article  ADS  Google Scholar 

  121. X. Liu, M.-E. Pistol, L. Samuelson, Phys. Rev. B 42, 7504 (1990)

    Article  ADS  Google Scholar 

  122. B. Gil, J.P. Albert, J. Camassel, H. Mathieu, C. Benoit ´a la Guillaume, Phys. Rev. B 33, 2701 (1986)

    Article  ADS  Google Scholar 

  123. W. M¨onch, Semiconductor Surfaces and Interfaces (Springer, Berlin, 2001)

    Google Scholar 

  124. Y. Rosenwaks, R. Shikler, Th. Glatzel, S. Sadewasser, Phys. Rev. B 70, 085320 (2004)

    Article  ADS  Google Scholar 

  125. D.G. Thomas, J.J. Hopfield, Phys. Rev. 150, 680 (1966)

    Article  ADS  Google Scholar 

  126. E. Mollwo, Z. Phys. 138, 478 (1954)

    Article  ADS  Google Scholar 

  127. J.I. Pankove, N.M. Johnson (eds.), Hydrogen in semiconductors. Semicond. Semimet. 34, (1991)

    Google Scholar 

  128. S.J. Pearton, J.W. Corbett, M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, Berlin, 1992)

    Google Scholar 

  129. T. Sakurai, H.D. Hagstrom, J. Vac. Sci. Technol. 13, 807 (1976)

    Article  ADS  Google Scholar 

  130. J.I. Pankove, Appl. Phys. Lett. 32, 812 (1978)

    Article  ADS  Google Scholar 

  131. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1977)

    Article  ADS  Google Scholar 

  132. P.J.H. Denteneer, C.G. Van de Walle, S.T. Pantelides, Phys. Rev. B 39, 10809 (1989)

    Article  ADS  Google Scholar 

  133. C.P. Herrero, M. Stutzmann, Phys. Rev. B 38, 12668 (1988)

    Article  ADS  Google Scholar 

  134. M. Stavola, K. Bergmann, S.J. Pearton, J. Lopata, Phys. Rev. Lett. 61, 2786 (1988)

    Article  ADS  Google Scholar 

  135. V.P. Markevich, L.I. Murin, M. Suezawa, J.L. Lindstr¨om, J. Coutinho, R. Jones, P.R. Briddon, S. ¨Oberg, Phys. Rev. B 61, 12964 (2000)

    Article  ADS  Google Scholar 

  136. V.P. Markevich, A.R. Peaker, J. Coutinho, R. Jones, V.J.B. Torres, S. ¨Oberg, P.R. Briddon, L.I. Murin, L. Dobaczewski, N.V. Abrosimov, Phys. Rev. B 69, 125218 (2004)

    Article  ADS  Google Scholar 

  137. A.S. Yapsir, P. Deak, R.K. Singh, L.C. Snyder, J.W. Corbett, T.-M. Lu, Phys. Rev. B 38, 9936 (1988)

    Article  ADS  Google Scholar 

  138. R.L. Petritz, Phys. Rev. 104, 1508 (1956)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Grundmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grundmann, M. (2010). Electronic Defect States. In: The Physics of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13884-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13884-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13883-6

  • Online ISBN: 978-3-642-13884-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics