Skip to main content

Incomputability in Physics

  • Conference paper
Programs, Proofs, Processes (CiE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6158))

Included in the following conference series:

Abstract

Computability originated from Logic and followed the original path proposed by the founding fathers of the modern foundational analysis of Mathematics (Frege, Hilbert). This theoretical path departed in principle from the contemporary renewed relations between Geometry and Physics. In particular, the key issue of physical measure, as our only access to “reality”, is not part of its theoretical frame, in contrast to Physics, since Poincaré, Planck and Einstein. Computability though, by its fine analysis of undecidability, provides a very useful tool for the investigation of “unpredictability” in Physics. Unpredictability coincides with physical randomness, in classical and quantum frames. And an understanding of randomness turns out to be a key component of intelligibility in Physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailly, F., Longo, G.: Mathematics and Natural Sciences. In: The Physical Singularity of Life Phenomena. Imperial College Press/World Scientific (2010) (In French: Hermann, Paris, 2006)

    Google Scholar 

  2. Bailly, F., Longo, G.: Randomness and Determination in the interplay between the Continuum and the Discrete. Mathematical Structures in Computer Science 17(2), 289–307 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Braverman, M., Yampolski, M.: Non-computable Julia sets. Journ. Amer. Math. Soc. 19, 551–578 (2006)

    Article  MATH  Google Scholar 

  4. Bell, J.: A Primer in Infinitesimal Analysis. Cambridge U.P., Cambridge (1998)

    Google Scholar 

  5. Calude, C.: Information and randomness. Springer, Berlin (2002)

    MATH  Google Scholar 

  6. Cooper, B.S., Odifreddi, P.: Incomputability in Nature. In: Cooper, et al. (eds.) Computability and Models - Perspectives East and West, pp. 137–160. Kluwer Academic/Plenum, New York (2003)

    Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical Description of Physical Reality be Considered complete? Phys. Rev. 41, 777 (1935)

    Article  Google Scholar 

  8. Gacs, P., Hoyrup, M., Rojas, C.: Randomness on Computable Metric Spaces: A dynamical point of view. In: 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009 (2009)

    Google Scholar 

  9. Laskar, J.: Large scale chaos in the Solar System. Astron. and Astrophys 287, 9–12 (1994)

    Google Scholar 

  10. Longo, G.: Reflections on Incompleteness. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 160–180. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Longo, G.: Critique of Computational Reason in the Natural Sciences. In: Gelenbe, E., Kahane, J.-P. (eds.) Fundamental Concepts in Computer Science. Imperial College Press/World Sci. (2008)

    Google Scholar 

  12. Longo, G.: From exact sciences to life phenomena: following Schroedinger and Turing on Programs, Life and Causality. Special issue of Information and Computation 207(5), 543–670 (2009)

    MathSciNet  Google Scholar 

  13. Longo, G.: Interfaces of Incompleteness, downloadable, Italian version. La Matematica, Einaudi (2010); French version, Les Mathématiques, Editions du CNRS (2011)

    Google Scholar 

  14. Petersen, K.: Ergodic Theory. Cambridge Univ. Press, Cambridge (1983)

    MATH  Google Scholar 

  15. Pilyugin, S.Y.: Shadowing in Dynamical Systems. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  16. Pour-El, M.B., Richards, J.I.: Computability in analysis and physics. In: Perspectives in Mathematical Logic. Springer, Berlin (1989)

    Google Scholar 

  17. Riemann, B.: On the hypothesis which lie at the basis of Geometry (1854); English Transl. by Clifford, W., Nature (1873)

    Google Scholar 

  18. Svozil, K.: Randomness and undecidability in Physics. World Sci., Singapore (1993)

    Google Scholar 

  19. Turing, A.M.: Computing Machines and Intelligence. Mind LIX(236), 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  20. Turing, A.M.: The Chemical Basis of Morphogenesis. Philo. Trans. Royal Soc. B237, 37–72 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Longo, G. (2010). Incomputability in Physics. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13962-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13961-1

  • Online ISBN: 978-3-642-13962-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics