Skip to main content

Quantum Analogs of Fractional Derivatives

  • Chapter
Fractional Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 3395 Accesses

Abstract

The fractional derivative has different definitions (Samko et al., 1993; Kubas et al., 2006), and exploiting any of them depends on the kind of the problems, initial (boundary) conditions, and the specifics of the considered physical processes. The classical definitions are the so-called Riemann-Liouville and Liouville derivatives (Kubas et al., 2006). These fractional derivatives are defined by the same equations on a finite interval of ℝ and of the real axis ℝ, correspondently. Note that the Caputo and Riesz derivatives can be represented (Kubas et al., 2006; Samko et al., 1993) through the Riemann-Liouville and Liouville derivatives. Therefore quantization of Riemann-Liouville and Liouville fractional derivatives allows us to derive quantum analogs for Caputo and Riesz derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V.S. Anischenko, 1990, Complex Oscillations in Simple Systems, Nauka, Moscow. In Russian.

    Google Scholar 

  • M.V. Berry, 1996, Quantum fractals in boxes, Journal of Physics A, 29, 6617–6629.

    MATH  Google Scholar 

  • K.F. Falconer, 1990, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, New York.

    MATH  Google Scholar 

  • K.F. Falconer, 1985, The Geometry of Fractal Sets, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • J. Feder, 1988, Fractals, Plenum Press, New York, London.

    MATH  Google Scholar 

  • M. Frame, B. Mandelbrot, N. Neger, 2010, Fractal Geometry, http://classes.yale.edu/fractals

    Google Scholar 

  • G.H. Hardy, 1916, Weierstrass’s non-differentiable function, Transactions of the American Mathematical Society, 17, 301–325.

    MathSciNet  MATH  Google Scholar 

  • A.A. Kubas, H.M. Srivastava, J.J. Trujillo, 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    Google Scholar 

  • H. Kroger, 2000, Fractal geometry in quantum mechanics, field theory and spin systems, Physics Reports, 323, 81–181.

    Article  MathSciNet  ADS  Google Scholar 

  • E.N. Lorenz, 1963, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130–141.

    Article  ADS  Google Scholar 

  • B. Mandelbrot, 1983, The Fractal Geometry of Nature, Freeman, New York.

    Google Scholar 

  • Yu.I. Neimark, P.S. Landa, 1992, Stochastic and Chaotic Oscillations, Kluwer Academic, Dordrecht and Boston; Translated from Russian: Nauka, Moscow, 1987.

    Book  MATH  Google Scholar 

  • A.A. Potapov, 2005, Fractals in Radiophysics and Radiolocation, 2nd ed., Universitetskaya Kniga, Moscow. In Russian.

    Google Scholar 

  • S.G. Samko, A.A. Kubas, O.I. Marichev, 1993, Integrals and Derivatives of Fractional Order and Applications Nauka i Tehnika, Minsk, 1987. in Russian; and Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar 

  • C. Sparrow, 1982, The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors, Springer, New York.

    Book  Google Scholar 

  • V.E. Tarasov, 2001a, Quantization of non-Hamiltonian and dissipative systems, Physics Letters A, 288, 173–182.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • V.E. Tarasov, 2001b, Weyl quantization of dynamical systems with flat phase space, Moscow University Physics Bulletin, 56, 5–10.

    MATH  Google Scholar 

  • V.E. Tarasov, 2001c, Quantization of non-Hamiltonian systems, Theoretical Physics,, 2, 150–160.

    Google Scholar 

  • V.E. Tarasov, 2005, Fractional generalization of gradient and Hamiltonian systems, Journal of Physics A, 38, 5929–5943.

    Article  MathSciNet  MATH  Google Scholar 

  • V.E. Tarasov, 2008a, Weyl quantization of fractional derivatives, Journal of’ Mathematical Physics, 49, 102112.

    Article  MathSciNet  ADS  Google Scholar 

  • V.E. Tarasov, 2008b, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • F. Weierstrass, 1895, Über kontinuierliche funktionen eines reellen arguments, die fur keinen wert des letzteren einen bestimmten differential quotienten besitzen, In Mathematische Werke II, Mayer-Muller, Berlin, 71–74.

    Google Scholar 

  • D. Wojcik, I. Bialynicki-Birula, K. Zyczkowski, 2000, Time evolution of quantum fractals, Physical Review Letters, 85, 5022–5026; and E-print: quant-ph/0005060.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarasov, V.E. (2010). Quantum Analogs of Fractional Derivatives. In: Fractional Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14003-7_21

Download citation

Publish with us

Policies and ethics