Skip to main content

Interatomic Potentials

  • Chapter
  • First Online:
The Gaussian Approximation Potential

Part of the book series: Springer Theses ((Springer Theses))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.W. Brenner, Phys. Stat. Sol. (b) 217, 23 (2000)

    Article  ADS  Google Scholar 

  2. M. Finnis, Interatomic Forces in Condensed Matter. (Oxford University Press, Oxford, 2003)

    Book  Google Scholar 

  3. A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. (Dover Publications, New York, 1996)

    Google Scholar 

  4. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  5. S.J. Clark et al., Zeit. Krist. 220, 567 (2005)

    Article  Google Scholar 

  6. N.B. Wilding, A.D. Bruce, Phys. Rev. Lett. 85, 5138 (2000)

    Article  ADS  Google Scholar 

  7. W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968)

    Article  ADS  Google Scholar 

  8. A. Fortini, M. Dijkstra, J. Phys. Cond. Mat. 18, L371 (2008)

    Article  Google Scholar 

  9. P.N. Pusey, W. van Megen, Nature 320, 340 (1986)

    Article  ADS  Google Scholar 

  10. J.E. Jones, Proc. R. Soc. Lond. Ser. A 106, 463 (1924)

    Article  ADS  Google Scholar 

  11. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids. (Oxford University Press, Oxford, 1987)

    MATH  Google Scholar 

  12. W.L. Jorgensen, Encyclopedia of Computational Chemistry. (Wiley, New York, 1998)

    Google Scholar 

  13. K.P. Jensen, W.L. Jorgensen, J. Chem. Theo. Comp. 2, 1499 (2006)

    Article  Google Scholar 

  14. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  15. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  16. Y.-X. Yu, G.H. Gao, Int. J. ThermoPhys. 21, 57 (2000)

    Article  Google Scholar 

  17. L.B. Páartay, A.P. Bartóok, G. Csáanyi, submitted (2009)

    Google Scholar 

  18. J. Hernandez-Rojas, D.J. Wales, J. Non-Cryst. Solids 336, 218 (2004)

    Article  ADS  Google Scholar 

  19. J.R. Morris, X. Song, J. Chem. Phys. 116, 9352 (2002)

    Article  ADS  Google Scholar 

  20. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Article  ADS  Google Scholar 

  21. F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994)

    Article  ADS  Google Scholar 

  22. M.I. Baskes, Phys. Rev. Lett. 59, 2666 (1987)

    Article  ADS  Google Scholar 

  23. T.J. Lenosky et al., Mod. Sim. Mat. Sci. Eng. 8, 825 (2000)

    Article  ADS  Google Scholar 

  24. C.D. Taylor, Phys. Rev. B 80, 024104 (2009)

    Article  ADS  Google Scholar 

  25. J. Tersoff, Phys. Rev. B 38, 9902 (1988)

    Article  ADS  Google Scholar 

  26. P. Alinaghian, P. Gumbsch, A.J. Skinner, D.G. Pettifor, J. Phys. Cond. Mat. 5, 5795 (1993)

    Google Scholar 

  27. P.G. Cummins, D.A. Dunmur, R.W. Munn, N.R.J, Acta Crystallogr. Sect. A 32, 847 (1976)

    Article  ADS  Google Scholar 

  28. H.W. Horn et al., J. Chem. Phys. 120, 9665 (2004)

    Article  ADS  Google Scholar 

  29. Q. Chen, L. Cai, S. Duan, D. Chen, J. Phys. Chem. Sol. 65, 1077 (2004)

    Article  ADS  Google Scholar 

  30. W.J. Mortier, S.K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108, 4315 (2002)

    Article  Google Scholar 

  31. A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358 (2002)

    Article  Google Scholar 

  32. C. Sagui, L.G. Pedersen, T.A. Darden, J. Chem. Phys. 120, 73 (2004)

    Article  ADS  Google Scholar 

  33. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)

    Article  ADS  Google Scholar 

  34. E. Snelson, Z. Ghahramani, Sparse gaussian processes using pseudo-inputs, in Advances in Neural Information Processing Systems 18, ed. by Y. Weiss, B. Schölkopf, J. Platt (MIT Press, Cambridge, 2006), pp. 1257–1264

    Google Scholar 

  35. D.W. Brenner, Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  36. M. Wilson, S. Jahn, P.A. Madden, J. Phys.: Cond. Mat. 16, (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartók-Pártay, A. (2010). Interatomic Potentials. In: The Gaussian Approximation Potential. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14067-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14067-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14066-2

  • Online ISBN: 978-3-642-14067-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics