Skip to main content

Modeling of High Reynolds Number Flows with Solid Body Rotation or Magnetic Fields

  • Conference paper
Turbulence and Interactions

Abstract

We present two models for turbulent flows with periodic boundary conditions and with either rotation, or a magnetic field in the magnetohydrodynamics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as an invariant-preserving filter, whereas the other model, based on spectral closures, generalizes the concepts of eddy viscosity and eddy noise. These models, when used separately or in conjunction, may lead to substantial savings for modeling high Reynolds number flows when checked against high resolution direct numerical simulations (DNS), the examples given here being run on grids of up to 15363 points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montgomery, D., Pouquet, A.: An alternative interpretation for the Holm “alpha” model. Phys. Fluids 14, 3365–3366 (2002)

    Article  MathSciNet  Google Scholar 

  2. Chen, S.Y., Holm, D.D., Margolin, L.G., Zhang, R.: Direct numerical simulations of the Navier-Stokes alpha model. Physica D 133, 66–83 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Foias, C., Holm, D.D., Titi, E.S.: The Navier-Stokes-alpha model of fluid turbulence. Physica D 152-153, 505–519 (2001)

    Article  MathSciNet  Google Scholar 

  4. Holm, D.D.: Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. Chaos 12, 518–530 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, S., et al.: A connection between the Camassa-Holm equations and turbulent ßows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nadiga, B., Shkoller, S.: Enhancement of the inverse-cascade of energy in the 2D Lagrangian-averaged Navier-Stokes equations. Phys. Fluids 13, 1528–1531 (2001)

    Article  Google Scholar 

  7. Mininni, P., Montgomery, D., Pouquet, A.: Numerical solutions of the three-dimensional MHD alpha model. Phys. Fluids 17, 035112 (2005)

    Article  MathSciNet  Google Scholar 

  8. Pietarila Graham, J., et al.: Inertial Range Scaling, Kármán Theorem and Intermittency for Forced and Decaying Lagrangian Averaged MHD in 2D. Phys. Fluids 18, 045106 (2006)

    Article  MathSciNet  Google Scholar 

  9. Pietarila Graham, J., et al.: Highly turbulent solutions of LANS-α and their LES potential. Phys. Rev. E 76, 056310 (2007)

    Article  MathSciNet  Google Scholar 

  10. Pietarila Graham, J., et al.: Three regularization models of the Navier-Stokes equations. Phys. Fluids 20, 035107 (2008)

    Article  Google Scholar 

  11. Pietarila Graham, J., Mininni, P., Pouquet, A.: The Lagrangian-averaged model for MHD turbulence and the absence of bottleneck. Phys. Rev. E (2009) (to appear), arxiv/0806.2054v1

    Google Scholar 

  12. Graham, J., Mininni, P., Pouquet, A.: Cancellation exponent and multifractal structure in Lagrangian averaged magnetohydrodynamics. Phys. Rev. E 72, 045301(R) (2005)

    Article  Google Scholar 

  13. Orszag, S., Kruskal, M.: Formulation of the theory of turbulence. Phys. Fluids 11, 43–60 (1968)

    Article  MATH  Google Scholar 

  14. Baerenzung, J., et al.: Spectral Modeling of Turbulent Flows and the Role of Helicity. Phys. Rev. E 77, 046303 (2008)

    Article  MathSciNet  Google Scholar 

  15. Baerenzung, J., et al.: Spectral Modeling of Magnetohydrodynamic Turbulent Flows. Phys. Rev. E 78, 026310 (2008)

    Article  MathSciNet  Google Scholar 

  16. Mininni, P., Alexakis, A., Pouquet, A.: Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21, 015108 (2009)

    Article  Google Scholar 

  17. Mininni, P., Pouquet, A.: Helicity cascades in rotating turbulence. Phys. Fluids (2009) (to appear); See also arxiv:0809.0869

    Google Scholar 

  18. Baerenzung, J., et al.: Modeling of rotating flows at moderate Rossby numbers. Phys. Rev. E (2009) (submitted); See also arXiv:0812.1821v1

    Google Scholar 

  19. Baerenzung, J., et al.: Modeling of rotating flows with helicity (2009) (in preparation)

    Google Scholar 

  20. Chollet, J.P., Lesieur, M.: Parametrization of small-scale three-dimensional isotropic turbulence using spectral closures. J. Atmos. Sci. 38, 2747–2757 (1981)

    Article  Google Scholar 

  21. André, J.C., Lesieur, M.: Influence of Helicity on the Evolution of Isotropic Turbulence at High Reynolds Number. J. Fluid Mech. 81, 187–207 (1977)

    Article  MATH  Google Scholar 

  22. Sagaut, P., Cambon, C.: Homogeneous Turbulence Dynamics. Cambridge Univ. Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  23. Cambon, C., Scott, J.F.: Linear and nonlinear models of anisotropic turbulence. Ann. Rev. Fluid Mech. 31, 1–53 (1999)

    Article  MathSciNet  Google Scholar 

  24. Cambon, C., Rubinstein, R., Godeferd, F.S.: Advances in wave turbulence: rapidly rotating flows. New J. Phys. 6(73), 1–29 (2004)

    MathSciNet  Google Scholar 

  25. Cui, G.X., et al.: A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence. J. Fluid Mech. 582, 377–397 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Childress, S., Gilbert, A.: Stretch, Twist, Fold: The Fast Dynamo. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  27. Mininni, P., Pouquet, A.: Persistent cyclonic structures in self-similar turbulent flows. Phys. Rev. Lett. arXiv:0903.2294 (2009) (submitted)

    Google Scholar 

  28. Ponty, Y., et al.: Critical magnetic Reynolds number for dynamo action as a function of magnetic Prandtl number. Phys. Rev. Lett. 94, 164502 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pouquet, A., Baerenzung, J., Pietarila Graham, J., Mininni, P., Politano, H., Ponty, Y. (2010). Modeling of High Reynolds Number Flows with Solid Body Rotation or Magnetic Fields. In: Deville, M., Lê, TH., Sagaut, P. (eds) Turbulence and Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14139-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14139-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14138-6

  • Online ISBN: 978-3-642-14139-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics