Skip to main content

Assessing the Role of Earthworms in Biocontrol of Soil-Borne Plant Fungal Diseases

  • Chapter
  • First Online:
Biology of Earthworms

Part of the book series: Soil Biology ((SOILBIOL,volume 24))

Abstract

Earthworms are integral part of belowground communities, which are actively involved in redesigning the structure of the soil environment. In recent decades, several researches have shown the potential of application of vermicompost in controlling soil-borne plant fungal diseases. However, complexity of earthworm interactions with various abiotic and biotic components of the soil has posed a real challenge before the scientists unearthing the underlying mechanism of disease suppression. This chapter focuses on the earthworm-mediated factors contributing to soil-borne fungal disease suppression. Very briefly, we have highlighted the limitations of prevailing biocontrol methods of soil-borne fungal pathogens. Key mechanisms involved in earthworm-mediated soil-borne fungal disease suppression, such as influence on soil microbial communities, enzymatic activity, production of antifungal compounds, soil physicochemical properties, and systemic resistance in plants, are explored. Further, we have attempted to identify core areas and give future directions where concerted research efforts are still required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (1997) Induced structural and biochemical defenses. Plant pathology, 4th edn. Academic, London, pp 93–114

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, New York

    Google Scholar 

  • Aira M, Monroy F, Dominguez J (2007a) Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci Total Environ 385:252–261

    Article  CAS  PubMed  Google Scholar 

  • Aira M, Monroy F, Dominguez J (2007b) Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb Ecol 54:662–671

    Article  PubMed  Google Scholar 

  • Alan AR, Earle ED (2002) Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, Magainin II, and Cecropin B. Mol Plant Microb Interact 15:701–708

    Article  CAS  Google Scholar 

  • Alan AR, Blowers A, Earle ED (2004) Expression of a magainin type antimicrobial peptide gene (MSI-99) in tomato enhances resistance to bacterial speck disease. Plant Cell Rep 22:388–396

    Article  CAS  PubMed  Google Scholar 

  • Albanell E, Plaixats J, Cabrero T (1988) Chemical changes during vermicomposting (Eisenia fetida) of sheep manure mixed with cotton industrial wastes. Biol Fertil Soils 6:266–269

    Article  CAS  Google Scholar 

  • Asciutto K, Rivera MC, Wright ER, Morisigue D, López MV (2006) Effect of vermicompost on the growth and health of Impatiens wallerana. Phyton 75:115–123

    Google Scholar 

  • Atiyeh RM, Domínguez J, Subler S, Edwards CA (2000) Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia 44:709–724

    Article  Google Scholar 

  • Bae YS, Knudsen GR (2005) Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol Control 32:236–242

    Article  Google Scholar 

  • Blouin M, Zuily-Fodil Y, Anh-Thu P-T, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8:202–208

    Article  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soil-borne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Brown GG (1995) How do earthworms affect micro floral and faunal community diversity? Plant Soil 170:209–231

    Article  CAS  Google Scholar 

  • Cavigelli MA, Thien SJ (2003) Phosphorus bioavailability following incorporation of green manure crops. Soil Sci Soc Am J 67:1186–1194

    Article  CAS  Google Scholar 

  • Chittoor JM, Leach JE, White FF (1999) Induction of peroxidase during defense against pathogens. In: Datta SK, Muthukrishnan SK (eds) Pathogenesis: related proteins in plants. CRC, Boca Raton, pp 171–193

    Google Scholar 

  • Chowdappa P, Biddappa CC, Sujatha S (1999) Efficient recycling of organic wastes in arecanut (Areca catechu) and cocoa (Theobroma cacao) plantation through vermicomposting. Indian J Agr Sci 69:563–566

    Google Scholar 

  • De Vecchi L, Matta A (1989) An ultrastructural and cytochemical study of peroxidases, polyphenoloxidases and phenol in xylem of tomato plants infected with Fusarium oxysporum f. sp. lycopersici or Fusarium oxysporum f. sp. melonis. Caryologia 42:103–114

    Google Scholar 

  • Deshpande MV (1998) Chitin metabolism: A target for antifungal and insecticidal agents. Wealth and sustainable environment. In: Varma A (ed), Malhotra Publishing 503 House, New Delhi, pp 281–291

    Google Scholar 

  • Diab HG, Hu S, Benson DM (2003) Suppression of Rhizoctonia solani on impatiens by enhanced microbial activity in composted swine waste-amended potting mixes. Phytopathology 93:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Elmer WH, Ferrandino FJ (2009) Suppression of verticillium wilt of eggplant by earthworms. Plant Dis 93:485–489

    Article  Google Scholar 

  • Elvira C, Sampedro L, Benitez E, Nogales R (1998) Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot-scale study. Bioresour Technol 63:205–211

    Article  CAS  Google Scholar 

  • Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-dependent analyses of PCR-amplified 16 S rRNA genes. Appl Microbiol Biotechnol 71:942–952

    Article  CAS  PubMed  Google Scholar 

  • Garbeva P, van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani R, Wilcockson S, Koocheki A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162

    Article  CAS  Google Scholar 

  • Ghosh M, Chattopadhyay GN, Baral K (1998) Transformation of phosphorus during vermicomposting. Bioresour Technol 69:149–154

    Article  Google Scholar 

  • Goldstein J (1998) Compost suppresses disease in the lab and on the fields. Biocycle 39:62–64

    Google Scholar 

  • Gopal M, Gupta A, Sunil E, Thomas GV (2009) Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Curr Microbiol 59:15–20

    Article  CAS  PubMed  Google Scholar 

  • Grunwald NJ, Hu S, van Bruggen AHC (2000) Short-term cover crop decomposition in organic and conventional soils: soil microbial and nutrient cycling indicator variables associated with different levels of soil suppressiveness to Pythium aphanidermatum. Eur J Plant Pathol 106:51–65

    Article  Google Scholar 

  • Gutie´rrez-Miceli FA, Moguel-Zamudio B, Abud-Archila M, Gutie´rrez-Oliva VF, Dendooven L (2008) Sheep manure vermicompost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation. Bioresour Technol 99:7020–7026

    Article  Google Scholar 

  • Haimi J, Huhta V (1987) Comparison of composts produced from identical wastes by “vermistabilization” and conventional composting. Pedobiologia 30:137–144

    Google Scholar 

  • Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. Academic, London

    Google Scholar 

  • Hiltunen LH, White JG (2002) Cavity spots of carrot (Daucus carota). Ann Appl Biol 141:201–223

    Article  Google Scholar 

  • Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant diseases by composts. HortScience 32:184–187

    Google Scholar 

  • Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl Microbiol Biotechnol 66:434–442

    Article  CAS  PubMed  Google Scholar 

  • Hussin NM, Muse R, Ahmad S, Ramli J, Mahmood M, Sulaiman MR, Shukor MYA, Rahman MFA, Aziz KNK (2009) Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L. (Lecythidaceae). Afr J Biotechnol 8:2835–2842

    CAS  Google Scholar 

  • Jayasinghe BATD, Parkinson D (2009) Earthworms as the vectors of actinomycetes antagonistic to litter decomposer fungi. Appl Soil Ecol 43:1–10

    Article  Google Scholar 

  • Jones JP, Engelhard AW, Woltz SS (1989) Management of Fusarium wilt of vegetables and orna mentals by macro- and microelement nutrition. In: Engel hard AW (ed) Soil-borne plant pathogens: management of diseases with macro- and microelements. APS, St. Paul, pp 18–32

    Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–76

    Article  CAS  PubMed  Google Scholar 

  • Kale RD (1993) Vermiculture: scope for new biotechnology. In: Ghosh AK (ed) Earthworm resources & vermiculture. Zoological Survey of India, Calcutta, pp 105–108

    Google Scholar 

  • Kawase T, Yokokawa S, Saito A, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70:988–998

    Article  CAS  PubMed  Google Scholar 

  • Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Article  Google Scholar 

  • Koike ST, Subbarao KV, Davis RM, Turini TA (2003) Vegetable diseases caused by soil-borne pathogens. Publication 8099, Division of Agriculture and Natural Resources, University of California http://www.anrcatalog.ucdavis.edu. Accessed on 3 Dec 2009

  • Lampkin N (1999) Organic farming. Farming, Ipswich, pp 214–271

    Google Scholar 

  • Landa BB, Navas-Corte´s JA, Jime´nez-Díaz RM (2004) Influence of temperature on plant–rhizobacteria interaction related to biocontrol potential for suppression of Fusarium wilt of chickpea. Plant Pathol 53:341–352

    Article  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Lavelle P, Barois J, Blanchart E, Brown G, Brussard L, Decâens T, Fragoso C, Jimenez JJ, Kajondo KK, Martinez MA, Moreno A, Pashnasi B, Senpati B, Villenave C (1998) Earthworms as a resource in tropical agroecosystems. Nat Resour 34:26–41

    Google Scholar 

  • Lazcano C, Gómez-Brandón M, Domínguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Liu YQ, Sun ZJ, Wang C, Li SJ, Liu YZ (2004) Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. Acta Biochim Biophys Sin (Shanghai) 36:297–302

    Article  Google Scholar 

  • Manandhar T, Yami KD (2008) Biological control of foot rot disease of rice using fermented products of compost and vermicompost. Scientific World 6:52–57

    Google Scholar 

  • Matocha JE, Vacek SG (1997) Efficacy of fungicidal and nutritional treatments on cotton root rot suppression. Proc Beltwide Cotton Conference, National Cotton Council, Memphis, USA, pp 135–137

    Google Scholar 

  • McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460

    Article  CAS  PubMed  Google Scholar 

  • Misra S (2005) Engineering broad-spectrum disease resistance http://www.isb.vt.edu/articles/oct0502.htm. Assessed on 13 Dec 2009

  • Orozco FH, Cegarra J, Trujillo LM, Roig A (1996) Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and availability of nutrients. Biol Fertil Soils 22:162–166

    Article  Google Scholar 

  • Oyarzun PJ, Gerlagh M, Zadoks JC (1998) Factors associated with soil receptivity to some fungal root rot pathogens of peas. Appl Soil Ecol 10:151–169

    Article  Google Scholar 

  • Padmavathiamma PK, Li LY, Kumari UR (2008) An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresour Technol 99:1672–1681

    Article  CAS  PubMed  Google Scholar 

  • Parrella MP, Heinz KM, Nunney L (1992) Biological control through augmentative releases of natural enemies: a strategy whose time has come. Am Entomol 38:172–179

    Google Scholar 

  • Parthasarathi K, Ranganathan LS (1999) Longevity of microbial and enzyme activity and their influence on NPK content in pressmud vermicasts. Eur J Soil Biol 35:107–113

    Article  Google Scholar 

  • Rivera MC, Wright ER, López MV, Fabrizio MC (2004) Temperature and dosage dependent suppression of damping-off caused by Rhizoctonia solani in vermicompost amended nurseries of white pumpkin. Phyton 54:131–136

    Google Scholar 

  • Rodríguez Navarro JA, Zavaleta Mejía E, Sanchez García P, Gonzalez Rosas H (2000) The effect of vermicompost on plant nutrition, yield and incidence of root and crown rot of gerbera (Gerbera jamesonii H. Bolus). Fitopatología 35:66–69

    Google Scholar 

  • Sahni S, Sarma BK, Singh KP (2008a) Management of Sclerotium rolfsii with integration of non-conventional chemicals, vermicompost and Pseudomonas syringae. World J Microbiol Biotechnol 24:517–522

    Article  Google Scholar 

  • Sahni S, Sarma BK, Singha DP, Singha HB, Singha KP (2008b) Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Prot 27:369–376

    Article  CAS  Google Scholar 

  • Salisbury FB, Ross CW (1986) Plant Physiology, CBS Publishers Distributors, New Delhi

    Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2007) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. Bio Control 52:87–112

    CAS  Google Scholar 

  • Senapati BK (1993) Earthworm gut contents and its significance. In: Ghosh AK (ed) Earthworm resources & vermiculture. Zoological Survey of India, Calcutta, pp 97–99

    Google Scholar 

  • Shaukat SS, Siddiqui IA (2003) The influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrophomina phaseolina by fluorescent pseudomonads in tomato. Lett Appl Microbiol 36:392–398

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui Y, Meon S, Ismail R, Rahmani M (2009) Bio-potential of compost tea from agro-waste to suppress Choanephora cucurbitarum L. the causal pathogen of wet rot of okra. Biol Control 49:38–44

    Article  Google Scholar 

  • Singh RS (2002) Introduction to principles of plant pathology 4th edn, Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi

    Google Scholar 

  • Singh UP, Maurya S, Singh DP (2003) Antifungal activity and induced resistance in pea by aqueous extract of vermicompost and for control of powdery mildew of pea and balsam. J Plant Dis Protect 110:544–553

    Google Scholar 

  • Steinberg C, Edel-Hermann V, Alabouvette C, Lemanceau P (2007) Soil suppressiveness to plant diseases. In: van Elsas JD, Jansson J, Trevors JT (eds) Modern soil microbiology. CRC, New York, pp 455–478

    Google Scholar 

  • Stratmann JW (2003) Long distance run in the wound response – jasmonic acid is pulling ahead. Trends Plant Sci 8:247–250

    Article  CAS  PubMed  Google Scholar 

  • Subler S (2002) Proc start your own worm farm. North Carolina State University, Raleigh

    Google Scholar 

  • Sullivan P (2001) Sustainable management of soil-borne plant diseases. ATTRA, USDA’s Rural Business Cooperative Service, https://www.attra.org

  • Suthar S (2009) Impact of vermicompost and composted farmyard manure on growth and yield of garlic (Allium sativum L.) field crop. Int J Plant Product 3:27–38

    Google Scholar 

  • Szczech M (1999) Supressiveness of vermicompost against Fusarium wilt of tomato. J Phytopathol 147:155–161

    CAS  Google Scholar 

  • Szczech M, Smolinska U (2001) Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora nicotianae Breda de Haan var. nicotianae. J Phytopathol 149:77–82

    Article  Google Scholar 

  • Tamari K, Kaji J (1954) Biochemical studies of the rice blast fungus Pyricularia oryzae Cav., the causative fungus of the rice blast disease of the rice plants – 1: studies on the toxins produced by blast fungus. J Agric Chem Soc Japan 29:85–190

    Google Scholar 

  • Tanaka YT, Mura SO (1993) Agroactive compound of microbial origin. Annu Rev Microbiol 47:57–87

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Gonzálezb JL (2009) Application of two vermicomposts on a rice crop: effects on soil biological properties and rice quality and yield. Agron J 101:336–344

    Article  Google Scholar 

  • Thomas PW, Cole GT (1999) Chitinase: a potential target for an antifungal drug. Abstr Gen Meet Am Soc Microbiol 99:306, Abstract no. F-53

    Google Scholar 

  • Tiunov AV, Scheu S (2000) Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Appl Soil Ecol 14:17–26

    Article  Google Scholar 

  • Van Bruggen AHC, Semenov AM (1999) A new approach to the search for indicators of root disease suppression. Aust J Plant Pathol 28:4–10

    Article  Google Scholar 

  • Van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

  • Van Driesche RG, Heinz KM (2004) An overview of biological control in protected culture. In: Heinz KM, Van Driesche RG, Parrella MP (eds) Bio-control in protected culture. Ball Publishing, Batavia, pp 1–24

    Google Scholar 

  • Van Lenteren JC (1995) Integrated pest management in protected crops. In: Dent D (ed) Integrated pest management. Chapman and Hall, London, pp 311–343

    Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Vivas A, Monero B, Garcia-Rodriguez S, Benitez E (2009) Assessing the impact of composting and vermicomposting on bacterial community size and structure and microbial functional diversity of an olive-mill waste. Bioresour Technol 100:1319–1326

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Woltz SS, Jones JP (1973) Tomato Fusarium wilt control by adjustments in soil fertility. Proc Fla State Hortic Soc 86:157–159

    CAS  Google Scholar 

  • Yasir M, Aslam Z, Kim SW, Seon-Woo L, Jeon CO, Chung YR (2009) Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour Technol 100:4396–4403

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Liu Q, Liu Q, Liu X, Sun Q, Yan J, Qi X, Fan S (2008) Effect of liquid culture requirements on antifungal antibiotic production by Streptomyces rimosus MY02. Bioresour Technol 99:2087–2091

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Han DA, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455

    Article  CAS  PubMed  Google Scholar 

  • Zhang BG, Li GT, Shen TS, Wang JK, Sun Z (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia foetida. Soil Biol Biochem 32:2055–2062

    Article  CAS  Google Scholar 

  • Zhang X, Sun Z, Zhuo R, Hou Q, Lin G (2002) Purification and characterization of two antibacterial peptides from Eisenia fetida. Prog Biochem Biophys 29:955–960

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh K. Meghvansi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Meghvansi, M.K., Singh, L., Srivastava, R.B., Varma, A. (2011). Assessing the Role of Earthworms in Biocontrol of Soil-Borne Plant Fungal Diseases. In: Karaca, A. (eds) Biology of Earthworms. Soil Biology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14636-7_11

Download citation

Publish with us

Policies and ethics