Skip to main content

Review of CAVLC, Arithmetic Coding, and CABAC

  • Chapter
  • First Online:
Entropy Coders of the H.264/AVC Standard

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

In the Baseline and Extended profiles of H.264/AVC, except the fixed-length coding, two VLC techniques are supported including: CAVLC for quantized transform residues and Exp-Golomb coding for other syntax elements [Wiegand03]. In the previous standards, entropy coding of residues is based on the forward zig-zag scanned run-length coding and fixed variable-length coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  2. Richardson IEG (2003) H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Wiley, Chichester

    Book  Google Scholar 

  3. Golomb S (1966) Run-length encodings. IEEE Trans Inf Theory 12(3):399–401

    Article  MathSciNet  MATH  Google Scholar 

  4. Moffat A, Turpin A (2002) Compression and coding algorithms. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  5. Huffman DA (1952) A method for the construction of minimum redundancy codes. Proc IRE 40(10):1098–1101

    Article  Google Scholar 

  6. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656

    MathSciNet  MATH  Google Scholar 

  7. Abramson N (1963) Information theory and coding. McGraw-Hill Book Co., Inc., New York, NY

    Google Scholar 

  8. Rissanen JJ (1976) Generalized kraft inequality and arithmetic coding. IBM J Res Dev 20(198):198–203

    Article  MathSciNet  MATH  Google Scholar 

  9. Pasco RC (1976) Source coding algorithms for fast data compression, PhD thesis, Department of Electrical Engineering, Stanford University

    Google Scholar 

  10. Langdon GG (1984) An introduction to arithmetic coding. IBM J Res Dev 28:135–149

    Article  MathSciNet  MATH  Google Scholar 

  11. Witten IH, Neal RM, Cleary JG, (1987) Arithmetic coding for data compression. Commun ACM 30(6):520–540

    Article  Google Scholar 

  12. Pennebaker WB, Mitchell JL, Langdon JGG, Arps RB (1988) An overview of the basic principles of the Q-coder adaptive binary arithmetic coder. IBM J Res Dev 32(6):717–726

    Article  Google Scholar 

  13. Mitchell J, Pennebaker W (1993) JPEG: still image data compression standard. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  14. Information technology—JPEG2000 image coding system—Part 1: core coding system. ISO/IEC, ISO/IEC International Standard 15444-1, 2000

    Google Scholar 

  15. Slattery MJ, Mitchell JL (1998) The Qx-coder. IBM J Res Dev 42(6):767–784

    Article  Google Scholar 

  16. Pastuszak G (2005) A high-performance architecture for embedded block coding in JPEG 2000. IEEE Trans Circuits Syst Video Technol 15(9):1182–1191

    Article  Google Scholar 

  17. Marpe D, Schwarz H, Wiegand T (2003a) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  18. Marpe D, Schwarz H, Wiegand T (2003a) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  19. Teuhola J (1978) A compression method for clustered bit-vectors. Inf Process Lett 7(10):308–311

    Article  MATH  Google Scholar 

  20. Marpe D, Schwarz H, Wiegand T (2003a) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  21. Marpe D, Schwarz H, Wiegand T (2003a) Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans Circuits Syst Video Technol 13(7):620–636

    Article  Google Scholar 

  22. Muller K, Smolic A, Kautzner M, Eisert P, Wiegand T (2005) Predictive compression of dynamic 3D meshes. In: Proceedings of IEEE international conference on image processing, pp I-621–624

    Google Scholar 

  23. Sanchez V, Nasiopoulos P, Abugharbieh R (2008) Efficient 4D motion compensated lossless compression of dynamic volumetric medical image data. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, pp 549–552

    Google Scholar 

  24. Zhang L, Wu X, Zhang N, Gao W, Wang Q, Zhao D (2007) Context-based arithmetic coding reexamined for DCT video compression. In Proceedings of IEEE international symposium on circuits and systems, pp 3147–3150

    Google Scholar 

  25. Wu Y, Woods JW (2007) Scalable motion vector coding based on CABAC for MC-EZBC. IEEE Trans Circuits Syst Video Technol 17(6):790–795

    Article  Google Scholar 

  26. Sehoon Y, Vetro A (2007) RD-optimized view synthesis prediction for multiview video coding. In: Proceedings of IEEE international conference on image processing, pp I-209–212

    Google Scholar 

  27. Kordasiewicz RC, Gallant MD, Shirani S (2007) Encoding of affine motion vectors. IEEE Transactions on Multimedia, 9(7):1346–1356

    Article  Google Scholar 

  28. Golwelkar A, Woods JW (2007) Motion-compensated temporal filtering and motion vector coding using biorthogonal filters. IEEE Trans Circuits Syst Video Technol 17(4):417–428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Tian .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tian, X., Le, T.M., Lian, Y. (2011). Review of CAVLC, Arithmetic Coding, and CABAC. In: Entropy Coders of the H.264/AVC Standard. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14703-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14703-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14702-9

  • Online ISBN: 978-3-642-14703-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics