Skip to main content

A Framework for Synthesis of Human Gait Oscillation Using Intelligent Gait Oscillation Detector (IGOD)

  • Conference paper
Contemporary Computing (IC3 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 94))

Included in the following conference series:

Abstract

The main objective of this paper illustrates an elementary concept about the designing, development and implementation of a bio-informatics diagnostic tool which understands and analyzes the human gait oscillation in order to provide an insight on human bi-pedal locomotion and its stability. A multi sensor device for detection of gait oscillations during human locomotion has been developed effectively. It has been named “IGOD”, an acronym of the “Intelligent Gait Oscillation Detector”. It ensures capturing of different person’s walking pattern in a very elegant way. This device would be used for creating a database of gait oscillations which could be extensively applied in several implications. The preliminary acquired data for eight major joints of a human body have been presented significantly. The electronic circuit has been attached to IGOD device in order to customize the proper calibration of every joint angle eventually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65(3), 147–159 (1991)

    Article  MATH  Google Scholar 

  2. Su, H., Huang, F.-G.: Human gait recognition based on motion analysis. Proceedings of International Conference on Machine Learning and Cybernetics 7(18-21), 4464–4468 (2005)

    Google Scholar 

  3. Cunado, D., Nixon, M.S., Carter, J.N.: Automatic extraction and description of human gait models for recognition purposes. Computer Vision and Image Understanding 90(1), 1–41 (2003)

    Article  Google Scholar 

  4. Riley, M., Ude, A., Wade, K., Atkeson, C.G.: Enabling real-time full-body imitation: a natural way of transferring human movement to humanoids. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2(14-19), pp. 2368–2374 (2003)

    Google Scholar 

  5. Lee, J., Ha, I.: Real-Time Motion Capture for a Human Body using Accelerometer. In: Robotica, vol. 19, pp. 601–610. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  6. Lee, J., Ha, I.: Sensor Fusion and Calibration for Motion Captures using Accelerometers. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 1954–1959 (1999)

    Google Scholar 

  7. Barbieri, R., Farella, E., Benini, L., Ricco, B., Acquaviva, A.: A low-power motion capture system with integrated accelerometers (gesture recognition applications). In: Consumer Communications and Networking Conference, vol. 1(5-8), pp. 418–423 (2004)

    Google Scholar 

  8. Hafner, V.V., Bachmann, F.: Human-Humanoid walking gait recognition. In: Proceedings of 8th IEEE-RAS International Conference on Humanoid Robots, pp. 598–602 (2008)

    Google Scholar 

  9. Au, S.K., Dilworth, P., Herr, H.: An ankle-foot emulation system for the study of human walking biomechanics. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2939–2945 (2006)

    Google Scholar 

  10. Nandi, G.C., Ijspeert, A., Nandi, A.: Biologically inspired CPG based above knee active prosthesis. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2368–2373 (2008)

    Google Scholar 

  11. Lugo-Villeda, L.I., Frisoli, A., Sandoval, G.O.O., Bergamasco, M., Parra-Vega, V.: A mechatronic analysis and synthesis of human walking gait. In: Proceedings of IEEE International Conference on Mechatronics, pp. 1–6 (2009)

    Google Scholar 

  12. Phidget Interface kit, http://www.phidgets.com/products.php?category=0&product_id=1018

  13. Phidget Rotation Sensor, http://www.phidgets.com/products.php?category=1&product_id=1109

  14. Lissajous_curve, http://en.wikipedia.org/wiki/Lissajous_curve

  15. Nandi, G.C., Ijspeert, A., Chakraborty, P., Nandi, A.: Development of Adaptive Modular Active Leg (AMAL) using bipedal robotics technology. Robotics and Autonomous Systems 57(6-7), 603–616 (2009)

    Article  Google Scholar 

  16. Yi, Z., Shayan, A., Wanping, Z., Tong, L., Chen, T.-P., Jung, J.-R., Duann, M.S., Chung-Kuan, C.: Analyzing High-Density ECG Signals Using ICA. IEEE Transactions on Biomedical Engineering 55(11), 2528–2537 (2008)

    Article  Google Scholar 

  17. Yang, Q., Siemionow, V., Yao, W., Sahgal, V., Yue, G.H.: Single-Trial EEG-EMG Coherence Analysis Reveals Muscle Fatigue-Related Progressive Alterations in Corticomuscular Coupling. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(2), 97–106 (2010)

    Google Scholar 

  18. Marzani, F., Calais, E., Legrand, L.: A 3-D marker-free system for the analysis of movement disabilities - an application to the legs. IEEE Transactions on Information Technology in Biomedicine 5(1), 18–26 (2001)

    Article  Google Scholar 

  19. Green, R.D., Ling, G.: Quantifying and recognizing human movement patterns from monocular video Images-part I: a new framework for modeling human motion. IEEE Transactions on Circuits and Systems for Video Technology 14(2), 179–190 (2004)

    Article  Google Scholar 

  20. Dejnabadi, H., Jolles, B.M., Aminian, K.: A New Approach for Quantitative Analysis of Inter-Joint Coordination During Gait. IEEE Transactions on Biomedical Engineering 55(2), 755–764 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mondal, S., Nandy, A., Chakrabarti, A., Chakraborty, P., Nandi, G.C. (2010). A Framework for Synthesis of Human Gait Oscillation Using Intelligent Gait Oscillation Detector (IGOD). In: Ranka, S., et al. Contemporary Computing. IC3 2010. Communications in Computer and Information Science, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14834-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14834-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14833-0

  • Online ISBN: 978-3-642-14834-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics