Skip to main content

Modeling and Simulation of Polymeric Nanocomposite Processing

  • Chapter
  • First Online:
Recent Advances in Elastomeric Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 9))

  • 1617 Accesses

Abstract

As a consequence of its large surface area to volume ratio, the embedment of nano-particles in polymers leads to large interface area and hence considerable interphase volume region between the nanoparticles and the polymer. The resulting bulk properties in the context of nano-particle filled polymers therefore differ from the use of conventional particle reinforcement. While the mechanical, electrical and other solid state physical properties of polymer nanocomposites can be easily obtained due to the static nature of the molecular and continuum modeling, the same cannot be said so for the case of polymer nanocomposite processing due to the dynamic flow nature inherent in the latter. This chapter lays down the common rules adopted in modeling of polymer nanocomposite processing. Beginning from the various interatomic and intermolecular potential energy functions that are indispensable for molecular modeling, the chapter presents two major approaches for molecular modeling of polymer flow. Recent results arising from the use of molecular modeling is then summarized with emphasis on the glass transition temperature and the rheological properties of the polymer melt with the presence of nano-scale fillers. The chapter concludes with the advantages of molecular modeling techniques for understanding the nanoparticle-filled polymer in the context of flow processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212–1214 (1994)

    Article  CAS  Google Scholar 

  2. Xie, X.L., Mai, Y.W., Zhou, X.P.: Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R 49, 89–112 (2005)

    Article  Google Scholar 

  3. Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53, 73–197 (2006)

    Article  Google Scholar 

  4. Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: Poly-mer matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40, 1511–1575 (2006)

    Article  CAS  Google Scholar 

  5. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  6. Ou, Y., Yang, F., Yu, Z.: A new conception on the toughness of nylon 6/silica nanocomposites prepared via in situ polymerization. J. Polym. Sci. Part B: Polym. Phys. 36, 789–795 (1998)

    Article  CAS  Google Scholar 

  7. Jiang, L., Lam, Y.C., Tam, K.C., Chua, T.H., Sim, G.W., Ang, L.S.: Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer 46, 243–252 (2005)

    Article  CAS  Google Scholar 

  8. Chen, Y., Zhou, S., Yang, H., Gu, G., Wu, L.: Preparation and characterization of nanocomposites polyurethane. J. Colloid Interface Sci. 276, 370–378 (2004)

    Article  Google Scholar 

  9. Ma, D., Hugener, T.A., Siegel, R.W., Christerson, A., Martensson, E., Onneby, C., Schadler, L.: Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 16, 724–731 (2005)

    Article  CAS  Google Scholar 

  10. Zhang, M., Singh, R.: Mechanical reinforcement of un-saturated polyester by Al2O3 nanoparticles. Mater. Lett. 58, 408–412 (2004)

    Article  CAS  Google Scholar 

  11. Chen, G., Wu, C., Weng, W.: Preparation of polystyrene/graphite nanosheet composite. Polymer 44, 1781–1784 (2003)

    Article  CAS  Google Scholar 

  12. Yano, K., Usuki, A.: Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. Part A: Polym. Chem. 31, 2493–2498 (1993)

    Article  CAS  Google Scholar 

  13. Ray, S.S., Okamoto, M.: Polymer/layered silicate nano-composite: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  CAS  Google Scholar 

  14. Shen, J.W., Chen, X.M., Huang, W.Y.: Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation. J. Appl. Polym. Sci. 88, 1864–1869 (2003)

    Article  CAS  Google Scholar 

  15. Park, J.H., Jana, S.: Mechanism of exfoliation of nano-clay particles in epoxy-clay nanocomposites. Macromolecules 36, 2758–2768 (2003)

    Article  CAS  Google Scholar 

  16. Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A., Okada, A.: Preparation and mechanical properties of polypropylene–clay hybrids. Macromolecules 30, 6333–6338 (1997)

    Article  CAS  Google Scholar 

  17. Yano, K., Usuki, A., Okada, A.: Synthesis and properties of polyimide–clay hybrid films. J. Polym. Sci. Part A: Polym. Chem. 35, 2289–2294 (1997)

    Article  CAS  Google Scholar 

  18. Maiti, M., Bhattacharya, M., Bhowmick, A.K.: Elastomer nanocomposites. Rubber Chem. Technol. 81, 384–469 (2008)

    CAS  Google Scholar 

  19. Zhang, L.Q., Wang, Y.Z., Wang, Y.Q., Sui, Y., Yu, D.S.: Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites. J. Appl. Polym. Sci. 78, 1873–1878 (2000)

    Article  CAS  Google Scholar 

  20. Starr, F.W., Douglas, J.F., Glotzer, S.C.: Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology. J. Chem. Phys. 119, 1777–1788 (2003)

    Article  CAS  Google Scholar 

  21. Knauert, S.T., Douglas, J.F., Starr, F.W.: The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J. Polym. Sci. Part B: Polym. Phys. 45, 1882–1897 (2007)

    Article  CAS  Google Scholar 

  22. Smith, J.S., Bedrov, D., Smith, G.D.: A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos. Sci. Technol. 63, 1599–1605 (2003)

    Article  CAS  Google Scholar 

  23. Bedrov, S.D., Smith, G.D., Smith, J.S.: Matrix-induced nanoparticle interactions in polymer melts. A molecular dynamics simulation study. J. Chem. Phys. 119, 10438–10447 (2003)

    Article  CAS  Google Scholar 

  24. Borodin, O., Smith, G.D., Bandyopadhyaya, R., Byutner, E.: Molecular dynamics simulation of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 36, 7873–7883 (2003)

    Article  CAS  Google Scholar 

  25. Smith, J.S., Borodin, O., Smith, G.D., Kober, E.M.: A molecular dynamics simulation and quantum chemistry study of poly(dimethylsiloxane)-silica nanoparticle interactions. J. Polym. Sci. Part B: Polym. Phys. 45, 1599–1615 (2007)

    Article  CAS  Google Scholar 

  26. Smith, G.D., Bedrov, D., Li, L.W., Byutner, O.: A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys. 117, 9478–9489 (2002)

    Article  CAS  Google Scholar 

  27. Desai, T., Keblinski, P., Kumar, S.K.: Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys. 122, 134910 (2005)

    Article  Google Scholar 

  28. Thomin, J.D., Keblinski, P., Kumar, S.K.: Network effects on the nonlinear rheology of polymer nanocomposites. Macromolecules 41, 5988–5991 (2008)

    Article  CAS  Google Scholar 

  29. Sen, S., Thomin, J.D., Kumar, S.K., Keblinski, P.: Molecular underpinnings of the mechanical reinforcement in polymer nanocomposites. Macromolecules 40, 4059–4067 (2007)

    Article  CAS  Google Scholar 

  30. Yuan, Q.W., Kloczkowski, A., Mark, J.E., Sharaf, M.A.: Simulations on the reinforcement of poly(dimethylsiloxane) elastomers by randomly distributed filler particles. J. Polym. Sci. Part B: Polym. Phys. 34, 1647–1657 (1996)

    Article  CAS  Google Scholar 

  31. Mark, J.E.: Some simulations on filler reinforcement in elastomers. Mol. Cryst. Liq. Cryst. 374, 29–38 (2002)

    Article  CAS  Google Scholar 

  32. Mark, J.E., Abou-Hussein, R., Sen, T.Z., Kloczkowski, A.: Some simulations on filler reinforcement in polymers. Polymer 46, 8894–8904 (2005)

    Article  CAS  Google Scholar 

  33. Erguney, F.M., Mattice, W.L.: Response of matrix chains to nanoscale filler particles. Polymer 49, 2621–2623 (2008)

    Article  CAS  Google Scholar 

  34. Erguney, F.M., Lin, H., Mattice, W.L.: Dimensions of matrix chains in polymers filled with energetically neutral nanoparticles. Polymer 47, 3689–3695 (2006)

    Article  CAS  Google Scholar 

  35. Lin, H., Erguney, F., Mattice, W.L.: Collapsed chains as models for filler particles in a polymer melt. Polymer 46, 6154–6162 (2005)

    Article  CAS  Google Scholar 

  36. Vacatello, M.: Molecular arrangements in polymer-based nanocomposites. Macromol Theory Simul 11, 757–765 (2002)

    Article  CAS  Google Scholar 

  37. Vacatello, M.: Chain dimensions in filled polymers: an intriguing problem. Macromolecules 35, 8191–8193 (2002)

    Article  CAS  Google Scholar 

  38. Vacatello, M.: Monte Carlo simulations of polymer melts filled with solid nanoparticles. Macromolecules 34, 1946–1952 (2001)

    Article  CAS  Google Scholar 

  39. Termonia, Y.: Monte Carlo modeling of dense polymer melts near nanoparticles. Polymer 50, 1062–1066 (2009)

    Article  CAS  Google Scholar 

  40. Hinchliffe, A.: Modelling molecular structures. Wiley, England (1996)

    Google Scholar 

  41. Rigby, D., Roe, R.J.: Molecular dynamics simulation of polymer liquid and glass. I. Glass transition. J. Chem. Phys. 87, 285–7292 (1987)

    Article  Google Scholar 

  42. Rigby, D., Roe, R.J.: Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation. J. Chem. Phys. 89, 5280–5290 (1988)

    Article  CAS  Google Scholar 

  43. Rigby, D., Roe, R.J.: Molecular dynamics simulation of polymer liquid and glass. 3. Chain conformation. Macromolecules 22, 2259–2264 (1989)

    Article  CAS  Google Scholar 

  44. Rigby, D., Roe, R.J.: Molecular dynamics simulation of polymer liquid and glass. 4. Free-volume distribution. Macromolecules 23, 5312–5319 (1990)

    Article  CAS  Google Scholar 

  45. Sun, Z., Morgan, R.J., Lewis, D.N.: Calculation of crystalline modulus of syndiotactic polystyrene using molecular modeling. Polymer 33, 725–727 (1992)

    Article  CAS  Google Scholar 

  46. Fan, C.F., Cagin, T., Chen, Z.M., Smith, K.A.: Molecular modeling of polycarbonate. 1. Force field, static structure, and mechanical properties. Macromolecules 27, 2383–2391 (1994)

    Article  CAS  Google Scholar 

  47. Noid, D.W., Tuzun, R.E., Sumpter, B.G.: On the importance of quantum mechanics for nanotechnology. Nanotechnology 8, 119–127 (1997)

    Article  CAS  Google Scholar 

  48. Jin, Y., Boyd, R.H.: Subglass Chain dynamics and relaxation in polyethylene: a molecular dynamics simulation study. J. Chem. Phys. 108, 9912–9923 (1998)

    Article  CAS  Google Scholar 

  49. Fukui, K., Sumpter, B.G., Barnes, M.D., Noid, D.W.: Molecular dynamics studies of the structure and properties of polymer nano-particles. Comp. Theor. Polym. Sci. 9, 245–254 (1996)

    Article  Google Scholar 

  50. Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    Article  CAS  Google Scholar 

  51. Noid, D.W., Pfeffer, G.A.: Short time molecular dynamics simulations: stressed polyethylene results. J. Polym. Sci. Part B: Polym. Phys. 27, 2321–2335 (1989)

    Article  CAS  Google Scholar 

  52. Sumpter, B.G., Noid, D.W., Wunderlich, B.: Computer experiments on the internal dynamics of crystalline polyethylene: mechanistic details of conformational disorder. J. Chem. Phys. 93, 6875–6889 (1990)

    Article  CAS  Google Scholar 

  53. Noid, D.W., Sumpter, B.G., Wunderlich, B.: Molecular dynamics simulation of twist motion in polyethylene. Macromolecules 24, 4148–4151 (1991)

    Article  CAS  Google Scholar 

  54. Sumpter, B.G., Noid, D.W., Wunderlich, B.: Computational experiments on the motion and generation of defects in polymer crystals. Macromolecules 25, 7247–7255 (1992)

    Article  CAS  Google Scholar 

  55. Tuzun, R.E., Noid, D.W., Sumpter, B.G.: The dynamics of molecular bearings. Nanotechnology 6, 64–74 (1995)

    Article  CAS  Google Scholar 

  56. Brown, D., Clarke, J.H.R.: Molecular dynamics of an amorphous polymer under tension. 1. Phenomenology. Macromolecules 24, 2075–2082 (1991)

    Article  CAS  Google Scholar 

  57. Ryckaert, J.P., Bellemans, A.: Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett. 30, 123–125 (1975)

    Article  CAS  Google Scholar 

  58. Steele, D.J.: An ab initio investigation of the torsional potential function of n-butane. J. Chem. Soc. Faraday Trans. II 81, 1077–1083 (1985)

    Article  CAS  Google Scholar 

  59. Boyd, R.H.: Method for calculation of the conformation of minimum potential energy and thermodynamic functions of molecules from empirical valence force potentials—application to the cyclophanes. J. Chem. Phys. 49, 2574–2583 (1968)

    Article  CAS  Google Scholar 

  60. Sorensen, R.A., Liam, W.B., Boyd, R.H.: Prediction of polymer crystal structures and properties: a method utilizing simultaneous inter- and intramolecular energy minimization. Macromolecules 21, 194–199 (1988)

    Article  CAS  Google Scholar 

  61. Williams, D.E.: Nonbonded potential parameters derived from crystalline hydrocarbons. J. Chem. Phys. 47, 4680–4684 (1967)

    Article  CAS  Google Scholar 

  62. Schoen, M., Hoheisel, C., Beyer, O.: Liquid CH4, liquid CF4 and the partially miscible liquid mixture of CH4/CF4: a molecular dynamics study based on both a spherically symmetric and a four-centre Lennard-Jones model. Mol Phys 58, 699–709 (1986)

    Article  CAS  Google Scholar 

  63. Tashiro, K.: Molecular dynamics calculation to clarify the relationship between structure and mechanical properties of polymer crystals: the case of orthorhombic polyethylene. Comp Theo Polym Sci 11, 357–374 (2001)

    Article  CAS  Google Scholar 

  64. Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  CAS  Google Scholar 

  65. Swope, W.C., Anderson, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76, 637–649 (1982)

    Article  CAS  Google Scholar 

  66. Metropolis, N.A., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  CAS  Google Scholar 

  67. Klein, M.L., Murphy, R.D.: Elastic constants of solid Ar, Kr, and Xe: a Monte Carlo study. Phys. Rev. B 6, 2433–2442 (1972)

    Article  CAS  Google Scholar 

  68. Rapold, R.F., Mattice, W.L.: Introduction of short and long range energies to simulate real chains on the 2nd lattice. Macromolecules 29, 2457–2466 (1996)

    Article  CAS  Google Scholar 

  69. Cho, J.H., Mattice, W.L.: Estimation of long-range interaction in coarse-grained rotational isomeric state polyethylene chains on a high coordination lattice. Macromolecules 30, 637–644 (1997)

    Article  CAS  Google Scholar 

  70. Doruker, P., Mattice, W.L.: Reverse mapping of coarse-grained polyethylene chains from the second nearest neighbor diamond lattice to an atomistic model in continuous space. Macromolecules 30, 5520–5526 (1997)

    Article  CAS  Google Scholar 

  71. Doruker, P., Mattice, W.L.: Dynamics of bulk polyethylene on a high coordination lattice. Macromol. Symp. 133, 47–70 (1999)

    Google Scholar 

  72. Doruker, P., Mattice, W.L.: Simulation of polyethylene thin films on a high coordination lattice. Macromolecules 31, 1418–1426 (1998)

    Article  CAS  Google Scholar 

  73. Vao-soongnern, V., Doruker, P., Mattice, W.L.: Simulation of an amorphous polyethylene nanofiber on a high coordination lattice. Macromol. Theor. Simul. 9, 1–13 (2000)

    Article  CAS  Google Scholar 

  74. Yani, Y., Lamm, M.H.: Molecular dynamics simulation of polyimide-octahydrido silsesquioxane and polyimide-octaaminophenyl silsesquioxane systems. Polymer 50, 1324–1332 (2009)

    Article  CAS  Google Scholar 

  75. Papakonstantopoulos, G.J., Yoshimoto, K., Doxastakis, M., Nealey, P.F., de Pablo, J.J.: Local mechanical properties of polymeric nanocomposites. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72, 031801 (2005)

    Article  Google Scholar 

  76. Einstein, A.: Eine neue Bestimmung der Molekuldi-mensionen. Annalen der Physik 19, 289–306 (1906)

    Article  CAS  Google Scholar 

  77. Einstein, A.: Errata: Eine neue Bestimmung der Mole-kuldimensionen. Annalen der Physik 34, 591–592 (1911)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lim, TC. (2011). Modeling and Simulation of Polymeric Nanocomposite Processing. In: Mittal, V., Kim, J., Pal, K. (eds) Recent Advances in Elastomeric Nanocomposites. Advanced Structured Materials, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15787-5_4

Download citation

Publish with us

Policies and ethics