Skip to main content

Image Formation and Analysis of Coherent Microscopy and Beyond – Toward Better Imaging and Phase Recovery

  • Chapter
  • First Online:
Coherent Light Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 46))

  • 2380 Accesses

Abstract

Applications of phase microscopy based on either coherent or partially coherent sources are widely distributed in today's biological and biomedical research laboratories. But the quantitative phase information derivable from these techniques is often not fully understood, because in general, no universal theoretical model can be set up, and each of the techniques has to be treated specifically. This chapter is dedicated to the fundamental understanding of the methodologies that derive optical phase information using imaging techniques and microscopic instrumentation. Several of the latest and most significant techniques are thoroughly studied through the theoretical formalism of the optical transfer function. In particular, we classify these systems into two main categories: those based on coherent illumination, such as digital holographic microscopy (DHM) and its extension into tomography, and those based on partially coherent illumination, such as differential interference contrast (DIC) and differential phase contrast (DPC). Our intention is that the models described in this chapter give an insight into the behaviour of these phase imaging techniques, so that better instrumentation can be designed and improved phase retrieval algorithms can be devised.

The authors Shan Shan Kou and Shalin B. Mehta have contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gabor, A new microscopic principle. Nature. 161(4098), 777–778 (1948)

    Article  ADS  Google Scholar 

  2. J.W. Goodman, R.W. Lawrence, Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)

    Article  ADS  Google Scholar 

  3. U. Schnars, W. Juptner, Direct recording of holograms by a ccd target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)

    Article  ADS  Google Scholar 

  4. E. Cuche, F. Bevilacqua, C. Depeursinge, Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291–293 (1999)

    Article  ADS  Google Scholar 

  5. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, G. von Bally, Investigation of living pan- creas tumor cells by digital holographic microscopy. J. Biomed. Opt. 11, 034005 (2006)

    Article  ADS  Google Scholar 

  6. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005)

    Article  ADS  Google Scholar 

  7. A. Stern, B. Javidi, Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holo-graphic microscope. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 163–168 (2007)

    Article  ADS  Google Scholar 

  8. G. Pedrini, P. Fröning, H.J. Tiziani, F.M. Santoyo, Shape measurement of microscopic structures using digital holograms. Opt. Comm. 164(4–6), 257–268 (1999)

    Article  ADS  Google Scholar 

  9. E. Cuche, P. Marquet, C. Depeursinge, Simultaneous amplitude and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38, 6994–7001 (1999)

    Article  ADS  Google Scholar 

  10. G. Indebetouw, Y. Tada, J. Leacock, Quantitative phase imaging with scanning holographic microscopy: an experimental assessment. BioMed. Eng. OnLine. 5(1), 63 (2006)

    Article  Google Scholar 

  11. G. Popescu, Quantitative phase imaging of nanoscale cell structure and dynamics. Methods. Cell Biol. 90, 87–115 (2008)

    Article  Google Scholar 

  12. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, C. Depeursinge, Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J. Opt. Soc. Am. A. 23 (12), 3177–3190 (2006)

    Article  ADS  Google Scholar 

  13. A. Stadelmaier, J.H. Massig, Compensation of lens aberrations in digital holography. Opt. Lett. 25 (22), 1630–1632 (2000) Opt. Lett.

    Article  ADS  Google Scholar 

  14. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Society of Industrial Applied Mathematics, 2001), http://www.slaney.org/pct/pct-toc.html

  15. E. Wolf, Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1 (4), 153–156 (1969)

    Article  ADS  Google Scholar 

  16. C.J.R. Sheppard, T. Wilson, Fourier imaging of phase information in scanning and conventional optical microscopes. Phil. Trans. R. Soc. Lond. Ser. A 295 (1415), 513–536 (1980)

    Article  ADS  Google Scholar 

  17. C.J.R. Sheppard, M. Gu, The significance of 3-d transfer functions in confocal scanning microscopy. J. Microsc. 165 377–390 (1991)

    Google Scholar 

  18. C.J.R. Sheppard, M. Gu, Imaging by high-aperture optical system. J. Modern Opt. 40, 1631–1651 (1993)

    Article  ADS  Google Scholar 

  19. S.S. Kou, C.J.R. Sheppard, Imaging in digital holographic microscopy. Opt. Expr. 15, 13640–13648 (2007)

    Article  ADS  Google Scholar 

  20. S.S. Kou, C.J.R. Sheppard, Comparison of three dimensional transfer function analysis of alternative phase imaging methods. in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV, 6443, 64430Q, SPIE (2007)

    Google Scholar 

  21. M. Davidson, K. Kaufman, I. Mazor, The coherence probe microscope. Solid State Tech. 30 (9), 57–59 (1987)

    Google Scholar 

  22. W.T. Cathey, Optical Information Processing and Holography, Chapter 9 (Wiley, New York, NY, 1974)

    Google Scholar 

  23. C. Wagner, S. Seebacher, W. Osten, W. Juptner, Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology. Appl. Opt. 38 (22), 4812–4820 (1999)

    Article  ADS  Google Scholar 

  24. D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H.H. Scheld, G. von Bally, Lensless fourier holography for digital holographic interferometry on biological samples. Opt. Laser Eng. 36, 241–249 (2001)

    Article  Google Scholar 

  25. S. Rehman, K. Matsuda, T. Nakatani, M. Yamauchi, K. Homma, Lensless quasi fourier transform digital holographic microscope. in Proceedings of Asian and Pacific Rim Symposium on Biophotonics, Cairns, Australia, (2007)

    Google Scholar 

  26. J.W. Goodman, Introduction to Fourier Optics. (McGraw-Hill, New York, NY, 1996)

    Google Scholar 

  27. S. Rehman, K. Matsuda, H. Ohashi, C.J.R. Sheppard, Quantitative phase imaging with lensless quasi fourier transform hologram method. in Proceedings of Optics Within Life Sciences (OWLS), Singapore, 2008

    Google Scholar 

  28. V. Lauer, New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc. (Oxf) 205, 165–176 (2002)

    Article  MathSciNet  Google Scholar 

  29. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31 (2), 178–180 (2006)

    Article  ADS  Google Scholar 

  30. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, M. Feld, Tomographic phase microscopy. Nat Methods. 4 (9), 717–719 (2007)

    Article  Google Scholar 

  31. A. Devaney, A filtered backpropagation algorithm for diffraction tomography. Ultrason Imaging. 4 (4), 336–50 (1982)

    Article  Google Scholar 

  32. R. Mueller, M. Kaveh, G. Wade, Reconstructive tomography and applications to ultrasonics. Proc. IEEE. 67, 567–587 (April 1979)

    Article  ADS  Google Scholar 

  33. A.J. Devaney, Optics in four dimensions. in AIP Conference Proceedings, eds. by M.A. Machado, L.M. Narducci vol. 65, (American Institute of Physics, New York, 1980)

    Google Scholar 

  34. M. Born, E. Wolf, Principles of Optics, 7 ed. (Cambridge University Press, Cambridge 2005)

    Google Scholar 

  35. S.S. Kou, C.J.R. Sheppard, Image formation in holographic tomography:high-aperture image conditions. Appl. Opt. 48, H168–H175 (2009)

    Article  Google Scholar 

  36. S. Vertu, J.-J. Delaunay, I. Yamada, O. Haeberlé, Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space. Cent. Eur. J. Phys. 7 (1), 22–31 (2009)

    Article  Google Scholar 

  37. S.S. Kou, C.J.R. Sheppard, Image formation in holographic tomography. Opt. Lett. 33 (20), 2362–2364 (2008)

    Article  ADS  Google Scholar 

  38. M. Gu, Advanced Optical Imaging Theory (Optical Sciences, Springer, 2000)

    Google Scholar 

  39. S. Vertu, I. Yamada, J.J. Delaunay, O. Haeberle, Tomographic observation of transparent objects under coherent illumination and reconstruction by filtered backprojection and fourier diffraction theorem - spie. (San Jose, CA 2008,), 6861, 86103–86103 SPIE. Proc. (2008)

    Google Scholar 

  40. C.W. McCutchen, Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 54 (2), 240–242 (1964)

    Article  ADS  Google Scholar 

  41. A. Gray, E. Abbena, S. Salamon, Modern Differential Geometry of curves and Surfaces with Mathematica, 3rd ed. (Chapman and Hall CRC, London 2006)

    MATH  Google Scholar 

  42. F. Dubois, L.Joannes, J.C. Legros, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38, 7085–7094 (1999)

    Article  ADS  Google Scholar 

  43. F. Dubois, M.N. Requena, C. Minetti, O. Monnom, E. Istasse, Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl. Opt. 43 1131–1139 (February 2004)

    Article  ADS  Google Scholar 

  44. H.H. Hopkins, On the diffraction theory of optical images. Proc. R. Soc. Lond. A. 217 408–432 (May 1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. C.J.R. Sheppard, A. Choudhury, Image formation in the scanning microscope. J. Mod. Opt. 24 (10), 1051–1073 (1977)

    Article  Google Scholar 

  46. M.R. Teague, Deterministic phase retrieval: a green’s function solution. J. Opt. Soc. Am. 73 1434–1441 (November 1983)

    Article  ADS  Google Scholar 

  47. N. Streibl, Phase imaging by the transport of equation of intensity. Opt. Commun. 49 6 (1984)

    Article  ADS  Google Scholar 

  48. D. Paganin, K.A. Nugent, Noninterferometric phase imaging with partially coherent light, Phys. Rev. Lett. 80, 2586 (March 1998)

    Article  ADS  Google Scholar 

  49. K.A. Nugent, X-ray noninterferometric phase imaging: a unified picture. J. Opt. Soc. Am A. 24, 536–547 (February 2007)

    Article  ADS  Google Scholar 

  50. G. Nomarski, Interference polarizing device for study of phase objects, U.S. Patent 2924142, Feb 1960

    Google Scholar 

  51. M. Pluta, Advanced Light Microscopy, Specialized Methods. vol. 2 (PWN-Polish Scientific Publishers, Warszawa 1989)

    Google Scholar 

  52. N.H. Dekkers, H. de Lang, Differential phase contrast in a STEM. Optik. 41 (4), 452–456 (1974)

    Google Scholar 

  53. D. Hamilton, C. Sheppard, Differential phase contrast in scanning optical microscopy. J. Microsc. 133 (1), 27–39 (1984)

    Google Scholar 

  54. S.B. Mehta, C.J.R. Sheppard, Quantitative phase retrieval in the partially coherent differential interference contrast (DIC) microscope, (April 2009). (Focus on Microscopy, Krakow, Poland) URL: http://www.focusonmicroscopy.org/2009/PDF/209_Mehta.pdf

  55. L. Cohen, Time-Frequency Analysis: Theory and Applications, (Prentice Hall, Englewood Cliffs, NJ, 1995)

    Google Scholar 

  56. S.B. Mehta, C.J.R. Sheppard, Phase-space representation of partially coherent imaging systems using the Cohen class distribution. Opt. Lett. 35, 348–350 (February 2010)

    Article  Google Scholar 

  57. S.B. Mehta, C.J.R. Sheppard, Using the phase-space imager to analyze partially coherent imaging systems: brightfield, phase-contrast, differential interference contrast, differential phase contrast, and spiral phase contrast. J. Modern Opt. 57, 718–739 (2010)

    Article  MATH  Google Scholar 

  58. S.B. Mehta, C.J.R. Sheppard, Partially coherent image formation in differential interference contrast (DIC) microscope. Opt. Express. 16 (24), 19462–19479 (2008)

    Article  ADS  Google Scholar 

  59. C. Cogswell, C. Sheppard, Confocal differential interference contrast(DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging. J. Microsc. 165 81–101 (1992)

    Google Scholar 

  60. S.B. Mehta, C.J.R. Sheppard, Sample-less calibration of the differential interference contrast microscope. Appl. Opt. 49(15), 2954–2968 (2010)

    Article  ADS  Google Scholar 

  61. W. Galbraith, The image of a point of light in differential interference contrast microscopy: computer simulation. Microsc. Acta. 85 (3), 233–254 (1982)

    Google Scholar 

  62. T.J. Holmes, W.J. Levy, Signal-processing characteristics of differential-interference-contrast microscopy. Appl. Opt. 26 (18), 3929 (1987)

    Article  ADS  Google Scholar 

  63. C. Preza, D.L. Snyder, J. Conchello, Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy. J. Opt. Soc. Am. A. 16 (9), 2185–2199 (1999)

    Article  ADS  Google Scholar 

  64. P. Hariharan, M. Roy, Achromatic phase-shifting for two-wavelength phase-stepping interferometry. Opt. Commun. 126 (4–6), 220–222 (1996)

    Article  ADS  Google Scholar 

  65. C.J. Cogswell, N.I. Smith, K.G. Larkin, P. Hariharan, Quantitative DIC microscopy using a geometric phase shifter. Proc. SPIE 2984, 72 (1997)

    Article  ADS  Google Scholar 

  66. Y. Xu, Y.X. Xu, M. Hui, X. Cai, Quantitative surface topography determination by differential interference contrast microscopy. Opt. Precis. Eng. 9 (3), 226–229 (2001)

    Google Scholar 

  67. M.R. Arnison, K.G. Larkin, C.J.R. Sheppard, N.I. Smith, C.J. Cogswell, Linear phase imaging using differential interference contrast microscopy. J. Microsc. 214, 7–12 (April 2004)

    Article  MathSciNet  Google Scholar 

  68. J.S. Hartman, R.L. Gordon, D.L. Lessor, Quantitative surface topography determination by Nomarski reflection microscopy. 2: microscope modification, calibration, and planar sample experiments. Appl. Opt. 19 (17), 2998–300 (1980)

    Article  ADS  Google Scholar 

  69. W. Shimada, T. Sato, T. Yatagai, in Optical Testing and Metrology III: Recent Advances in Industrial Optical Inspection ed. by C.P. Grover. Optical surface microtopography using phase-shifting nomarski microscope., vol 1332 (SPIE, San Diego, CA, 1991), 525–529, pp. (1991)

    Google Scholar 

  70. C. Preza, Phase estimation using rotational diversity for differential interference contrast microscopy. PhD thesis, Washington University, 1998

    Google Scholar 

  71. C. Preza, Rotational-diversity phase estimation from differential-interference-contrast microscopy images. J. Opt. Soc. Am. A. 17 (3), 415–424 (2000)

    Article  ADS  Google Scholar 

  72. S.V. King, A. Libertun, R. Piestun, C.J. Cogswell, C. Preza, Quantitative phase microscopy through differential interference imaging. J. Biomed. Opt. 13 (2), 024020 (2008)

    Article  ADS  Google Scholar 

  73. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, (Wiley, New York NY, 1998)

    MATH  Google Scholar 

  74. M. Shribak, J. LaFountain, D. Biggs, S. Inoue, Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system. J. Biomed. Opt. 13 (1), 014011 (2008)

    Article  Google Scholar 

  75. J.A. ÓSullivan, C. Preza, Alternating minimization algorithm for quantitative differential-interference contrast (DIC) microscopy. Proc. SPIE 6814, 68140Y (2008)

    Article  Google Scholar 

  76. H. Ishiwata, M. Itoh, T. Yatagai, A new method of three-dimensional measurement by differential interference contrast microscope. Opt. Commun. 260 117–126 (April 2006)

    Article  ADS  Google Scholar 

  77. H. Ishiwata, M. Itoh, T. Yatagai, A new analysis for extending the measurement range of the retardation-modulated differential interference contrast (RM-DIC) microscope. Opt. Commun. 281 (6) 1412–1423 (2008)

    Article  ADS  Google Scholar 

  78. C.J.R. Sheppard, D.K. Hamilton, H.J. Matthews, Scanning optical microscopy of low-contrast samples. Nature. 334 (6183) 572 (1988)

    Article  ADS  Google Scholar 

  79. R. Hoffman, L. Gross, Modulation contrast microscope. Appl. Opt. 14 1169–1176 (May 1975)

    Article  ADS  Google Scholar 

  80. B. Kachar, Asymmetric illumination contrast: a method of image formation for video light microscopy. Science. 227 766–768 (February 1985)

    Article  ADS  Google Scholar 

  81. X. Cui, M. Lew, C. Yang, Quantitative differential interference contrast microscopy based on structured-aperture interference. Appl. Phys. Lett. 93 (9) 091113 (2008)

    Article  ADS  Google Scholar 

  82. D. Hamilton, C. Sheppard, T. Wilson, Improved imaging of phase gradients in scanning optical microscopy. J. microsc. 135 (3) 275–286 (1984)

    Google Scholar 

  83. J. Chapman, I. McFadyen, S. McVitie, Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures. Magn. IEEE Trans. 26 (5) 1506–1511 (1990)

    ADS  Google Scholar 

  84. S.B. Mehta, C.J.R. Sheppard, Linear phase-gradient imaging with asymmetric illumination-based differential phase contrast (AIDPC). in OSA Technical Digest, (Novel Techniques in Microscopy, Vancouver, Canada), p. NTuA5, (April 2009)

    Google Scholar 

  85. F. Pfeiffer, T. Weitkamp, O. Bunk, C. David. Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources. Nat Phys. 2 258–261 (April 2006)

    Article  Google Scholar 

  86. J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21 2758–2769 (1982)

    Article  ADS  Google Scholar 

  87. C.J.R. Sheppard, Defocused transfer function for a partially coherent microscope and application to phase retrieval. J. Opt. Soc. Am. A. 21 (5) 828–831 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  88. K.A. Nugent, B.D. Arhatari, A.G. Peele, A coherence approach to phase-contrast microscopy: Theory, Ultramicrosc. 108 937–945 (August 2008)

    Article  Google Scholar 

  89. B. Arhatari, A. Peele, K. Hannah, P. Kappen, K. Nugent, G. Williams, G. Yin, Y. Chen, J. Chen, Y. Song, A coherence approach to phase-contrast microscopy II: experiment. Ultramicrosc. 109 280–286 (February 2009)

    Article  Google Scholar 

  90. K. Ichikawa, A.W. Lohmann, M. Takeda, Phase retrieval based on the irrandiance transport equation and the fourier transform method: experiments. Appl. Opt. 27 3433–3436 (1988)

    Article  ADS  Google Scholar 

  91. F. Roddier, Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt. 27 1223–1225 (1988)

    Article  ADS  Google Scholar 

  92. F. Roddier Wavefront sensing and the irradiance transport equation. Appl. Opt., 29 1402–1403 (1990)

    Article  ADS  Google Scholar 

  93. K. Nugent, T. Gureyev, D. Cookson, D. Paganin, Z. Barnea, Quantitative phase imaging using hard x rays. Phys Rev Lett. 77 (14) 2961–2964 (1996)

    Article  ADS  Google Scholar 

  94. A. Barty, K.A. Nugent, D. Paganin, A. Roberts, Quantitative optical phase microscopy. Opt. Lett. 23 (11) 817–819 (1998)

    Article  ADS  Google Scholar 

  95. L.J. Allen, M.P. Oxley, Phase retrieval from series of images obtained by defocus variation. Opt. Commun. 199 (1–4), 65–75 (2001)

    Article  ADS  Google Scholar 

  96. M. Beleggia, M.A. Schofield, V.V. Volkov, Y. Zhu, On the transport of intensity technique for phase retrieval. Ultramicroscopy, 102 (1), 37–49 (2004)

    Article  Google Scholar 

  97. C.J.R. Sheppard, T.J. Connolly, M. Gu, Scattering by a one-dimensional rough surface and surface reconstruction by confocal imaging. Phys. Rev. Lett. 70, 1409–1412 (1993)

    Article  ADS  Google Scholar 

  98. C.J.R. Sheppard, T.J. Connolly, M. Gu, Imaging and reconstruction for rough surfaces scattering in the Kirchhoff approximations by confocal microscopy. J. Mod. Opt. 40, 2407 (1993)

    Article  ADS  Google Scholar 

  99. C.J.R. Sheppard, T.J. Connolly, M. Gu, The scattering potential for imaging in the reflection geometry. Opt. Commun. 117, 16–19 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin J.R. Sheppard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kou, S.S., Mehta, S.B., Rehman, S., Sheppard, C.J. (2011). Image Formation and Analysis of Coherent Microscopy and Beyond – Toward Better Imaging and Phase Recovery. In: Ferraro, P., Wax, A., Zalevsky, Z. (eds) Coherent Light Microscopy. Springer Series in Surface Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15813-1_11

Download citation

Publish with us

Policies and ethics