Skip to main content

Dynamics and Function of a CA1 Model of the Hippocampus during Theta and Ripples

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

The hippocampus is known to be involved in spatial learning in rats. Spatial learning involves the encoding and replay of temporally sequenced spatial information. Temporally sequenced spatial memories are encoded and replayed by the firing rate and phase of pyramidal cells and inhibitory interneurons with respect to ongoing network oscillations (theta and ripples). Understanding how the different hippocampal neuronal classes interact during these encoding and replay processes is of great importance. A computational model of the CA1 microcircuit [3], [4], [5] that uses biophysical representations of the major cell types, including pyramidal cells and four types of inhibitory interneurons is extended to address: (1) How are the encoding and replay (forward and reverse) of behavioural place sequences controlled in the CA1 microcircuit during theta and ripples? and (2) What roles do the various types of inhibitory interneurons play in these processes?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubin, J.E., Gerkin, R.C., Bi, G.Q., Chow, C.C.: Calcium time course as signal for spike-timing-dependent plasticity. J. Neurophysiol. 93, 2600–2613 (2005)

    Article  Google Scholar 

  2. Jarsky, T., Roxin, A., Kath, W.L., Spruston, N.: Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8(12), 1667–1676 (2005)

    Article  Google Scholar 

  3. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and Retrieval in a CA1 Microcircuit Model of the Hippocampus. In: Kurkova, V., et al. (eds.) ICANN 2008,, Part II. LNCS, vol. 5164, pp. 238–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cutsuridis, V., Cobb, S., Graham, B.P.: Hippocampus, microcircuits and associative memory. Neural Networks 22(8), 1120–1128 (2009)

    Article  Google Scholar 

  5. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus 20(3), 423–446 (2010)

    Google Scholar 

  6. Graham, B.P., Cutsuridis, V., Hunter, R.: Associative Memory Models of Hippocampal Areas CA1 and CA3. In: Cutsuridis, V., et al. (eds.) Hippocampal Microcircuits: A Computational Modeller’s Resource Book, pp. 461–494. Springer, Heidelberg (2010)

    Google Scholar 

  7. Hasselmo, M., Bodelon, C., Wyble, B.: A proposed function of the hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 793–817 (2002)

    Article  MATH  Google Scholar 

  8. Molyneaux, B.J., Hasselmo, M.: GABA B presynaptic inhibition has an in vivo time constant sufficiently rapid to allow modulation at theta frequency. J. Neurophys. 87(3), 1196–1205 (2002)

    Google Scholar 

  9. Kunec, S., Hasselmo, M.E., Kopell, N.: Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. J. Neurophysiol. 94(1), 70–82 (2005)

    Article  Google Scholar 

  10. Klausberger, T., Somogyi, P.: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008)

    Article  Google Scholar 

  11. Klausberger, T., Magill, P.J., Marton, L.F., David, J., Roberts, B., Cobden, P.M., Buzsaki, G., Somogyi, P.: Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003)

    Article  Google Scholar 

  12. Klausberger, T., Marton, L.F., Baude, A., Roberts, J.D., Magill, P.J., Somogyi, P.: Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat. Neurosci. 7(1), 41–47 (2004)

    Article  Google Scholar 

  13. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O., Somogyi, P.: Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378(6552), 75–78 (1995)

    Article  Google Scholar 

  14. Borhegyi, Z., Varga, V., Szilagyi, N., Fabo, D., Freund, T.F.: Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J. Neurosci. 24(39), 8470–8479 (2004)

    Article  Google Scholar 

  15. Buzsaki, G.: Two stage model of memory trace formation: a role for ”noisy” brain states. Neurosci. 31(3), 551–570 (1989)

    Article  Google Scholar 

  16. Diba, K., Buzsaki, G.: Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10(10), 1241–1242 (2007)

    Article  Google Scholar 

  17. Dragoi, G., Carpi, D., Recce, M., Csicsvari, J., Buzsaki, G.: Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J. Neurosci. 19(14), 6191–6199 (1999)

    Google Scholar 

  18. Foster, D.J., Wilson, M.A.: Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006)

    Article  Google Scholar 

  19. O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and the EEG theta rythm. Hippocampus 3(3), 317–330 (1993)

    Article  Google Scholar 

  20. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  21. Koene, R.A., Hasselmo, M.E.: Reversed and forward buffering of behavioral spike sequences enables retrospective and prospective retrieval in hippocampal regions CA3 and CA1. Neural Networks 21, 276–288 (2008)

    Article  Google Scholar 

  22. Colgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M.B., Moser, E.I.: Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462(19), 353–358 (2009)

    Article  Google Scholar 

  23. Schmidt, R., Diba, K., Leibold, C., Schmitz, D., Buzsaki, G., Kempter, R.: Single-trial phase precession in the hippocampus. J. Neurosci. 29(42), 13232–13241 (2009)

    Article  Google Scholar 

  24. Traub, R.D., Draguhn, A., Whittington, M.A., Baldeweg, T., Bibbig, A., Buhl, E.H., Schmitz, D.: Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev. Neurosci. 13, 1–30 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cutsuridis, V., Hasselmo, M. (2010). Dynamics and Function of a CA1 Model of the Hippocampus during Theta and Ripples. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics