Skip to main content

Learning Spaces as Representational Scaffolds for Learning Conceptual Knowledge of System Behaviour

  • Conference paper
Sustaining TEL: From Innovation to Learning and Practice (EC-TEL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6383))

Included in the following conference series:

Abstract

Scaffolding is a well-known approach to bridge the gap between novice and expert capabilities in a discovery-oriented learning environment. This paper discusses a set of knowledge representations referred to as Learning Spaces (LSs) that can be used to support learners in acquiring conceptual knowledge of system behaviour. The LSs are logically self-contained, meaning that models created at a specific LS can be simulated. Working with the LSs provides scaffolding for learners in two ways. First, each LS provides a restricted set of representational primitives to express knowledge, which focus the learner’s knowledge construction process. Second, the logical consequences of an expression derived upon simulating, provide learners a reflective instrument for evaluating the status of their understanding, to which they can react accordingly.

The work presented here is part of the DynaLearn project, which builds an Interactive Learning Environment to study a constructive approach to having learners develop a qualitative understanding of how systems behave. The work presented here thus focuses on tools to support educational research. Consequently, user-oriented evaluation of these tools is not a part of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biswas, G., Schwartz, D., Leelawong, K., Vye, N., TAG, V.: Learning by Teaching: A New Agent Paradigm for Educational Software. Applied Artificial Intelligence, Special Issue on Educational Agents 19(3), 363–392 (2005)

    Article  Google Scholar 

  2. Blair, K., Schwartz, D., Biswas, G., Leelawong, K.: Pedagogical Agents for Learning by Teaching: Teachable Agents. Technical report, School of Education, Stanford University (2006)

    Google Scholar 

  3. Blauvelt, R.G.: A design environment for automata: supporting children’s construction of mechanical reasoning and spatial cognition. Doctoral dissertation, University of Colorado at Boulder, USA (2001)

    Google Scholar 

  4. Bredeweg, B., Forbus, K.: Qualitative Modeling in Education. AI Magazine 24(4), 35–46 (2003)

    Google Scholar 

  5. Bredeweg, B., Gómez-Pérez, A., André, E., Salles, P.: DynaLearn - Engaging and Informed Tools for Learning Conceptual System Knowledge. In: Pirone, R., Azevedo, R., Biswas, G. (eds.) Cognitive and Metacognitive Educational Systems (MCES 2009), AAAI Fall Symposium, Arlington, Virginia USA, November 5-7. Technical report FS-09-02, pp. 46–51. AAAI Press, Menlo Park (2009a)

    Google Scholar 

  6. Bredeweg, B., Salles, P.: Qualitative models of ecological systems — Editorial introduction. Ecological Informatics 4(5-6), 261–262 (2009b)

    Article  Google Scholar 

  7. Bredeweg, B., Linnebank, F., Bouwer, A., Liem, J.: Garp3 — Workbench for Qualitative Modelling and Simulation. Ecological Informatics 4(5-6), 263–281 (2009c)

    Article  Google Scholar 

  8. Bredeweg, B., André, E., Bee, N., Bühling, R., Gómez-Pérez, J.M., Häring, M., Liem, J., Linnebank, F., Thanh Tu Nguyen, B., Trna, M., Wißner, M.: Technical design and architecture. DynaLearn, EC FP7 STREP project 231526, Deliverable D2. (2009d)

    Google Scholar 

  9. Elio, R., Sharf, P.B.: Modeling novice-to-expert shifts in problem solving and knowledge organization. Cognitive Science 14, 579–639 (1990)

    Article  Google Scholar 

  10. Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24, 85–168 (1984)

    Article  Google Scholar 

  11. Forbus, K.D., Feltovich, P.J.: Smart Machines in Education. AAAI Press / MIT Press, Cambridge (2001a)

    Google Scholar 

  12. Forbus, K.D., Carney, K., Harris, R., Sherin, B.L.: A qualitative modeling environment for middle-school students: A progress report. In: The 15th Int. Workshop on QR, San Antonio, Texas, May 17-18 (2001b)

    Google Scholar 

  13. Forbus, K.D.: Qualitative Modeling. In: Harmelen, F.v., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 3, pp. 361–393 (2008)

    Google Scholar 

  14. Frederiksen, J.R., White, B.Y.: Conceptualizing and constructing linked models: creating coherence in complex knowledge systems. In: Brna, P., Baker, M., Stenning, K., Tiberghien, A. (eds.) The Role of Communication in Learning to Model, pp. 69–96. Lawrence Erlbaum Associates, London (2002)

    Google Scholar 

  15. Gartner, A., Conway Kohler, M., Reissman, F.: Children Teach Children: Learning by Teaching. Harper&Row, New York (1971)

    Google Scholar 

  16. Hucke, L., Fischer, H.E.: The link of theory and practice in traditional and in computer-based university laboratory experiments. In: Psillos, D., Niedderer, H. (eds.) Teaching and learning in the science laboratory, pp. 205–218. Kluwer, Dordrecht (2002)

    Google Scholar 

  17. Jackson, S.L., Krajcik, J., Soloway, E.: The design of guided learner-adaptable scaffolding in interactive learning environments. In: Proceedings of ACM CHI 1998, pp. 187–194. ACM Press, New York (1998)

    Google Scholar 

  18. de Jong, T.: Technological Advances in Inquiry Learning. Science 312, 532–533 (2006)

    Article  Google Scholar 

  19. de Kleer, J.H., Brown, J.S.: A qualitative physics based on confluences. Artificial Intelligence 24, 7–83 (1984)

    Article  Google Scholar 

  20. Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., Bhogal, R.S.: The Persona Effect: Affective Impact of Animated Pedagogical Agents. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 359–366. ACM Press, New York (1997)

    Chapter  Google Scholar 

  21. Mettes, C.T.C.W., Roossink, H.J.: Linking factual and procedural knowledge in solving science problems: A case study in a thermodynamics course. Instructional Science 10, 333–361 (1981)

    Article  Google Scholar 

  22. Niedderer, H., Aufschnaiter, S., Tiberghien, A., Buty, C., Haller, K., Hucke, L., Seter, F., Fischer, H.: Talking physics in labwork contexts - A category based analysis of videotapes. In: Psillos, D., Niedderer, H. (eds.) Teaching and learning in the science laboratory, pp. 31–40. Kluwer, Dordrecht (2002)

    Google Scholar 

  23. Norman, D.A.: Things that make us Smart. Perseus Books, Cambridge (1993)

    Google Scholar 

  24. Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, New York (1984)

    Book  Google Scholar 

  25. Osborne, J., Simon, S., Collins, S.: Attitudes towards science: a review of the literature and its implications. Int. Journal of Science Education 25(9), 1049–1079 (2003)

    Article  Google Scholar 

  26. Otero, V., Johnson, A., Goldberg, F.: How Does the Computer Facilitate the Development of Physics Knowledge Among Prospective Elementary Teachers? Journal of Education 181(2), 57–89 (1999)

    Google Scholar 

  27. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, NY (1980)

    Google Scholar 

  28. Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., Strohecker, C.: Affective Learning: A Manifesto. BT Technology Journal 22(4), 253–269 (2004)

    Article  Google Scholar 

  29. Renkl, A.: Lernen durch Lehren. In: Rost, D. (ed.) Handwörterbuch Pädagogische Psychologie, vol. 3, pp. 416–420. Beltz Verlag, Auflage (2006)

    Google Scholar 

  30. Resnick, M.: Changing the centralized mind. MIT press, Cambridge (1994)

    Google Scholar 

  31. Richmond, G., Peterson, S.: STELLA II: An Introduction to Systems Thinking, High Performance Systems, Hanover, N.H (1992)

    Google Scholar 

  32. Schumacher, R.M., Gentner, D.: Transfer of training as analogical mapping. IEEE Transactions of Systems, Man, and Cybernetics 18, 592–600 (1988)

    Article  Google Scholar 

  33. Schwarz, C.V., White, B.Y.: Metamodeling Knowledge: Developing Students’ Understanding of Scientific Modeling. Cognition and Instruction 23(2), 165–205 (2005)

    Article  Google Scholar 

  34. Winkels, R., Bredeweg, B. (eds.): Qualitative Models in Interactive Learning Environments. Interactive Learning Environment (special issue) 5(1-2), 1–134 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bredeweg, B., Liem, J., Beek, W., Salles, P., Linnebank, F. (2010). Learning Spaces as Representational Scaffolds for Learning Conceptual Knowledge of System Behaviour. In: Wolpers, M., Kirschner, P.A., Scheffel, M., Lindstaedt, S., Dimitrova, V. (eds) Sustaining TEL: From Innovation to Learning and Practice. EC-TEL 2010. Lecture Notes in Computer Science, vol 6383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16020-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16020-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16019-6

  • Online ISBN: 978-3-642-16020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics