Skip to main content

Low Memory Distributed Protocols for 2-Coloring

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6366))

Included in the following conference series:

Abstract

In this paper we present new distributed protocols to color even rings and general bipartite graphs. Our motivation is to provide algorithmic explanation for human subject experiments that show human subjects can achieve distributed coordination in the form of 2-coloring over networks with a simple communication protocol. All our protocols use low (often constant) memory and reach a solution in feasible (polynomial rounds) and sometimes optimal time. All the protocols also have short message length and use a broadcast communication strategy. Our contributions include two simple protocols RingElect and GraphCoalescing for rings and general bipartite graphs, which can be viewed as candidates for natural human strategies. We present two other protocols RingElect and GraphElect which are optimal or nearly optimal in terms of the number of rounds (proportional to the diameter of the graph) but require somewhat more complex strategies. The question of finding simple protocols in the style of RingElect and GraphCoalescing that run in time proportional to diameter is open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In: FOCS 1979, pp. 218–223 (1979)

    Google Scholar 

  2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs, http://www.stat.berkeley.edu/~aldous/RWG/book.html

  3. Attiya, H., Welch, J.: Distributed Computing; Fundamentals, Simulations and Advanced Topics, 2nd edn. John Wiley & Sons, Chichester (2004)

    MATH  Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures & Algorithms 18(3) (May 2001)

    Google Scholar 

  6. Chaudhuri, K., Chung Graham, F., Jamall, M.S.: A network coloring game. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 522–530. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Cooper, C., Frieze, A., Radzik, T.: Multiple random walks in random regular graphs. SIAM Journal on Discrete Mathematics 23(4), 1738–1761 (2009)

    Article  MathSciNet  Google Scholar 

  8. Enemark, D., McCubbins, M., Paturi, R., Weller, N.: Good edge, bad edge: How network structure affects a group’s ability to coordinate. In: ESORICS (March 2009)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Israeli, A., Jalfon, M.: Token Management Schemes and Random Walks Yield Self-Stabilizing Mutual Exclusion. In: PODC 1990, pp. 119–131 (1990)

    Google Scholar 

  11. Kearns, M., Suri, S., Montfort, N.: An experimental study of the coloring problem on human subject networks. Science 313(5788), 824–827 (2006)

    Article  Google Scholar 

  12. Kearns, M., Judd, S., Tan, J., Wortman, J.: Behavioral experiments on biased voting in networks. National Academy of Science (January 2009)

    Google Scholar 

  13. Khot, S.: Improved inapproximability results for maxclique, chromatic number and approximate graph coloring. In: FOCS 2001, pp. 600–609 (2001)

    Google Scholar 

  14. Latané, B., L’Herrou, T.: Spatial clustering in the conformity game: Dynamic social impact in electronic groups. Journal of Personality and Social Psychology 70(6), 1218–1230 (1996)

    Article  Google Scholar 

  15. McCubbins, M.D., Paturi, R., Weller, N.: Connected Coordination: Network Structure and Group Coordination. American Politics Research 37, 899–920 (2009)

    Article  Google Scholar 

  16. Mossel, E., Schoenebeck, G.: Reaching Consensus on Social Networks. In: Innovations in Computer Science, ICS (2009)

    Google Scholar 

  17. Peleg, D.: Distributed Computing: A Locally-Sensitive Approach. SIAM Monographs, Philadelphia (2000)

    Book  Google Scholar 

  18. Santoro, N.: Design and Analysis of Distributed Algorithms. John Wiley & Sons, Inc., Chichester (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Israeli, A., McCubbins, M.D., Paturi, R., Vattani, A. (2010). Low Memory Distributed Protocols for 2-Coloring. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2010. Lecture Notes in Computer Science, vol 6366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16023-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16023-3_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16022-6

  • Online ISBN: 978-3-642-16023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics