Skip to main content

Abstract

The genus Olea contains about 30 species were grouped into three subgenera, Tetrapilus, Paniculatae, and Olea (cultivated olive and wild relatives), found in Asia, Australia and Asia, Africa and Europe, respectively. The species O. europaea L. includes six subspecies: Olea europaea L. ssp. europaea (the Mediterranean olives); O. e. laperrinei (distributed in Saharan massifs of Hoggar, Aïr, Jebel Marra in Algeria); O. e. cuspidata (which moved from South Africa to Egypt, East Australian areas and Hawaii, and from Arabia to northern India and Southwest China); O. e. guanchica (Canary Islands); O. e. maroccana (southwestern Morocco); and O. e. cerasiformis (Madeira).

Using molecular markers, it has been ascertained that the Mediterranean olives include the cultivated types (O. europaea L. ssp. europaea var. sativa), the true wild oleaster (O. e. e. var. sylvestris), and the feral form olevaster from seedlings raised from seeds of the cultivated types. The oleaster has a narrow range of distribution and it is often mistaken for olevaster. Recolonization of the Mediterranean basin by Oleaster occurred after the last glacial event, from refuges located in both eastern and western Mediterranean basin areas toward southern Europe. Oleaster is a source of rootstock for propagating new improved cultivated varieties. Cultivated and wild forms have the same diploid chromosome number (2n = 46) and are fully interfertile. Triploid and tetraploid genotypes have been isolated from cultivated O.e.e., but polyploid forms have been found in endangered natural populations of O. e. guancica (tetraploid) and O. e. maroccana (hexaploid).

Individual oleaster trees showing superior performance for size and/or oil content of fruit were selected empirically during olive domestication and propagated vegetatively as clones using cuttings that were planted directly or, more recently, grafted onto indigenous oleasters.

Genetic markers linked for most important agronomic traits, such as size of the tree, content of secondary products of fruit, flowering induction, oil quality, and biotic and abiotic resistance, will help introgression by conventional breeding of oleaster trait-enhancing genes into cultivated olive. Successful results were difficult to achieve due to both the complex genetic basis of the traits to be improved and the long juvenile period of the progenies that delays the expression of the target traits. In vitro techniques to regenerate doubled haploids from hybrids or somaclonal variation induction may complement classical breeding procedures. Genetic transformation could speed up the development of new genotypes, and transgenic olive plants with modified growth habit and putative induced disease resistance are being tested under filed conditions. However, the development of an efficient regeneration method from mature tissue is the limiting factor for the routine application of this technology to olive genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:99–414

    Article  CAS  Google Scholar 

  • Albertini E, Torricelli R, Bitocchi E, Raggi L, Marconi G, Pollastri L, Di Minco G, Battistini A, Papa R, Veronesi F (2010) Structure of genetic diversity in Olea europaea L. cultivars from Central Italy. Mol Breed (in press)

    Google Scholar 

  • Alcantara JM, Rey PJ, Valera F, Sanchez-Lafuente M (2000). Factors shaping the seedfall pattern of a bird-dispersal plant. Ecology 81:1937–1950

    Google Scholar 

  • Alché JD, Castro AJ, Jiménez-López JC, Morales S, Zafra A, Hamman-Khalifa AM, Rodríguez-García MI (2007) Differential characteristics of olive pollen from different cultivars: biological and clinical implications. J Invest Allerg Clin Immunol 17:69–75

    Google Scholar 

  • Amane M, Lumaret R, Hany V, Quazzani N, Debain C, Vivier G, Deguilloux MF (1999) Chloroplast-DNA variation in cultivated and wild olive (Olea europaea L.). Theor Appl Genet 99:133–139

    Article  CAS  Google Scholar 

  • Amiri ME (2008) The status of genetic resources of deciduous, tropical, and subtropical fruit species in Iran. Acta Hortic 769:159–167

    Google Scholar 

  • Amsellem L, Noyer JL, Le Bourgeois T, Hossaert-Mckey M (2000) Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:443–455

    Article  CAS  PubMed  Google Scholar 

  • Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98:411–421

    Article  CAS  Google Scholar 

  • Anthelme F, Abdoulkader A, Besnard G (2008) Distribution, shape and clonal growth of the rare endemic tree Olea europaea subsp. laperrinei (Oleaceae) in the Saharan mountains of Niger. Plant Ecol 198:73–87

    Article  Google Scholar 

  • Auld DL, Heikkinen MK, Erickson DA, Sernyk JL, Romero JE (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662

    Article  CAS  Google Scholar 

  • Baali-Cherif D, Besnard G (2005) High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Ann Bot 96:823–830

    Article  CAS  PubMed  Google Scholar 

  • Baldoni L, Fontanazza G (1990) Preliminary results on olive clonal rootstocks behaviour in the field. Acta Hortic 286:37–40

    Google Scholar 

  • Baldoni L, Abbott AG, Georgi LL (1996) Nucleotide sequence of a cDNA clone (U58141) from Olea europaea encoding a stearoyl-acyl carrier protein desaturase (PGR 96-052). Plant Physiol 111:1353

    Article  Google Scholar 

  • Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot 98:935–942

    Article  CAS  PubMed  Google Scholar 

  • Bandelj D, Jakse J and Javornik B (2002) DNA fingerprinting of olive varieties by microsatellite markers. Food Technol Biotechnol 40:185–190

    Google Scholar 

  • Bandelj D, Jakse J, Branka J (2004) Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica 136(1):93–102. doi: 10.1023/B:EUPH.0000019552.42066.10

    Google Scholar 

  • Bao ZH, Ma YF, Liu JF, Wang KJ, Zhang PF, Ni DX, Yang WQ (1980) Induction of plantlets from the hypocotyl of Olea europaea L. in vitro. Acta Bot Sin 2:96–97

    Google Scholar 

  • Baraldi R, Cristoferi G, Facini O, Lercari B (1992) The effect of light quality in Prunus cerasus. I. Photoreceptors involved in internode elongation and leaf expansion in juvenile plants. Photochem Photobiol 56:541–544

    Article  CAS  Google Scholar 

  • Barral P, Batanero E, Palomares O, Quiralte J, Villalba M, Rodríguez R (2004) A major allergen from pollen defines a novel family of plant proteins and shows intra and interspecies cross-reactivity. J Immunol 172:3644–3651

    CAS  PubMed  Google Scholar 

  • Barranco D, Trujillo I, Rallo P (2000) Are ‘Oblonga’ and ‘Frantoio’ olives the same cultivar? HortScience 35:1323–1325

    CAS  Google Scholar 

  • Bartolini S, Guerriero R (1995) Self-compatibility in several clones of oil olive cv. Leccino. Adv Hortic Sci 9:71–74

    Google Scholar 

  • Bartolini G, Prevost G, Messeri C (1994) Olive tree germplasm: descriptor lists of cultivated varieties in the world. Acta Hortic 365:116–118

    Google Scholar 

  • Bartolini G, Petruccelli R, Tindall HD (2002) In: Tindal HD, Menini UG (eds) Classification, origin, diffusion and history of the olive. FAO, Rome, Italy

    Google Scholar 

  • Bartolini S, Andreini L, Guerriero R, Gentili M (2006) Improvement of the quality of table olives in Tuscany through cross-breeding and selection: preliminary results of Leccino × Konservolia hybrids. In: Proceedings of 2nd international seminar on biotechnology and quality of olive tree products around the Mediterranean basin,Marsala, Italy, 5–10 Nov 2006, pp 143–146

    Google Scholar 

  • Bass DA, Crossman ND, Lawrie SL, Lethbridge MR (2006) The importance of population growth, seed dispersal and habitat suitability in determining plant invasiveness. Euphytica 148:97–109

    Article  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32(Database Issue):D138–D141

    Google Scholar 

  • Beauchamp GK, Keast RSJ, Morel D, Lin J, Pika J, Han Q, Lee CH, Smith AB, Breslin PAS (2005) Ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46

    Article  CAS  PubMed  Google Scholar 

  • Belaj A, Trujillo I, De la Rosa R, Rallo L, Giménez MJ (2001) Polymorphism and discriminating capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hortic Sci 126:64–71

    CAS  Google Scholar 

  • Bellini E (1990) Behaviour of some genetical characters in olive seedlings obtained by cross-breeding. In: Proceedings of 23rd international horticulture congress, Florence, Italy, Poster 3062 (Abstract)

    Google Scholar 

  • Bellini E (1993) Genetic variability and heritability of some characters in cross-bred olive seedlings. Olivae 49:21–34

    Google Scholar 

  • Bellini E, Pariah MV, Pandolfi S, Giordani E, Perri E, Silletti A (1995) Miglioramento genetico dell’ olivo: prime osservazioni su selezioni ottenute da incrocio. Ital Hortic 2:3–12

    Google Scholar 

  • Berenguer AG (1978) Seleccion clonal en Olivo (Olea europaea L.). Olea 6:7–15

    Google Scholar 

  • Besnard G, Berville A (2000) Multiple origins for mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA plymorphisms. Life Sci 323:173–181

    CAS  Google Scholar 

  • Besnard G, Bervillé A (2002) On chloroplast DNA variations in the olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms. Theor Appl Genet 104:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Khadari B, Villemur P, Bervillé A (2000) Cytoplasmic male sterility in the olive (Olea europaea L.). Theor Appl Genet 100:1018–1024

    Article  Google Scholar 

  • Besnard G, Baradat P, Bervillé A (2001a) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258

    Article  CAS  Google Scholar 

  • Besnard G, Breton C, Baradat P, Khadari B, Bervillé A (2001b) Cultivar identification in olive based on RAPD markers. J Am Soc Hortic Sci 126:668–675

    CAS  Google Scholar 

  • Besnard G, Khadari B, Baradat P, Bervillé A (2002a) Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor Appl Genet 105:139–144

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Khadari B, Baradat P, Bervillé A (2002b) Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor Appl Genet 104:1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Henry P, Wille L, Cooke D, Chapuis E (2007a) On the origin of the invasive olives (Olea europaea L, Oleaceae). Heredity 99:608–619

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Christin PA, Baali-Cherif D, Bouguedoura N, Anthelme F (2007b) Spatial genetic structure in the Laperrine’s olive (Olea europaea subsp. laperrinei), a long-living tree from the central Saharan mountains. Heredity 99:649–657

    Article  CAS  PubMed  Google Scholar 

  • Besnard G, Rubio de Casas R, Vargas P (2007c) Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea L.). J Biogeogr 34:736–752

    Article  Google Scholar 

  • Besnard G, Garcia-Verdugo C, Rubio De Casas R, Treier UA, Galland N, Vargas P (2008) Polyploidy in the Olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101:25–30

    Article  CAS  PubMed  Google Scholar 

  • Biasi R, Gutiérrez Pesce P, Muganu M, Magro P, Bernabei M, Rugini E (2003) Modifications of growth pattern in kiwifruit and cherry induced by the T-DNA genes of Agrobacterium rhizogenes. In: Proceedings of XLVII Italian society of agricultural genetics – SIGA annual congress, Verona, Italy, 24–27 Sept 2003, ISBN 88-900622-4X

    Google Scholar 

  • Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83:188–195

    Article  CAS  PubMed  Google Scholar 

  • Bongi G, Palliotti A (1994) Handbook of environmental physiology of fruit crops. CRC, New York, NY

    Google Scholar 

  • Bonoli M, Bendini A, Cerretani L, Lercker G, Toschi TG (2004) Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J Agric Food Chem 52:7026–7032

    Article  CAS  PubMed  Google Scholar 

  • Boskou D (1996) Olive oil chemistry and technology. AOCS, Champaign, IL

    Google Scholar 

  • Breton C, Tersac M, Bervillé A (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr 33:1916–1928

    Article  Google Scholar 

  • Briccoli Bati C, Fodale A, Mulé R, Trombino T (1999) Trials to increase in vitro rooting of Olea europaea L. cuttings. Acta Hortic 474:91–94

    Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Bronzini de Caraffa V, Giannettini J, Gambotti C, Maury J (2002a) Genetic relationships between cultivated and wild olives of Corsica and Sardinia using RAPD markers. Euphytica 123:263–271

    Article  CAS  Google Scholar 

  • Bronzini de Caraffa V, Maury J, Gambotti C, Breton C, Bervillé A, Giannettini J (2002b) Mitochondrial DNA variation and RAPD mark oleasters, olive and feral olive from Western and Eastern Mediterranean. Theor Appl Genet 104:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Bruner AC, Jung S, Abbott AG, Powell GL (2001) The naturally occurring high oleate oil character in some peanut varieties results from reduced Oleoyl-PC Desaturase activity from mutation of Aspartate 150 to Asparagine. Crop Sci 41:522–526

    Article  CAS  Google Scholar 

  • Bueno MA, Pintos B, Martin A (2006) Induction of embryogenesis via isolated microspore culture in Olea europaea L. In: Proceedings of 2nd international seminar on biotechnology and quality of olive tree products around the Mediterranean basin, Marsala, Italy, 5–10 Nov 2006, pp 19–26

    Google Scholar 

  • Cahoon EB, Shanklin J (2000) Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proc Natl Acad Sci USA 97:12350–12355

    Article  CAS  PubMed  Google Scholar 

  • Canas LA, Benbadis A (1988) In-vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74

    Google Scholar 

  • Cañas LA, Wyssmann AM, Benbadis MC (1987) Isolation, culture and division of olive (Olea europaea L) protoplasts. Plant Cell Rep 5:369–371

    Article  Google Scholar 

  • Cansev A, Gulen H, Eris A (2008) Cold-hardiness of olive (Olea europaea L.) cultivars in cold-acclimated and non-acclimated stages: seasonal alteration of antioxidative enzymes and dehydrin-like proteins. J Agric Sci 147:51–61

    Article  CAS  Google Scholar 

  • Cantini C, Cimato A, Sani G (1999) Morphological evaluation of olive germplasm present in Tuscany region. Euphytica 109:173–181

    Article  Google Scholar 

  • Capelo A, Silva S, Brito G, Santos C (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tiss Org Cult. doi: 10.1007/s11240-010-9773-x

    Google Scholar 

  • Carmona JJ, Molina A, Fernandez JA, Lopez-Fando JJ, Garcia-Olmedo F (1993) Expression of the a-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3:457–462

    Article  CAS  PubMed  Google Scholar 

  • Carriero F, Fontanazza G, Cellini F, Giorgio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea). Theor Appl Genet 104:301–307

    Google Scholar 

  • Carrion JS, Dupre M (1996) Late quaternary vegetational history at Navarrès. Eastern Spain. A two core approach. New Phytol 134:177–191

    Article  Google Scholar 

  • Castro AJ, Alché JD, Cuevas J, Romero PJ, Alché V, Rodríguez-García MI (2003) Pollen from different olive tree cultivars contains varying amounts of the major allergen Ole e 1. Int Arch Allerg Immunol 131:164–173

    Article  CAS  Google Scholar 

  • Cavallotti A, Regina TMR, Quagliariello C (2003) New sources of cytoplasmic diversity in the Italian population of Olea europaea L. as revealed by RFLP analysis of mitochondrial DNA: characterization of the cox3 locus and possible relationship with cytoplasmic male sterility. Plant Sci 164:241–252

    Article  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  Google Scholar 

  • Chevalier A (1948) L'origine de l'olivier cultivé e ses variations. Rev Bot Appl 303–303:1–25

    Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars (Olea europaea L.). Theor Appl Genet 104:223–228

    Article  CAS  PubMed  Google Scholar 

  • Cipriani M, Cerretani, L, Bendini A, Fontanazza G, Lercker G (2006) Study of phenolic compounds in Olea europea L. fruits of cvs. Frantoio, FS17 and Don Carlo during olive’s growth. In: Proceedings of 4th EuroFed lipid congress on oils, fats and lipids for a healthier future. The need for interdisciplinary approaches, Madrid, Spain, 1–4 Oct 2006, p 449

    Google Scholar 

  • Claros GM, Crespillo R, Aguilar ML, Canovas FM (2000) DNA fingerprinting and classification of geographically related genotypes of olive-tree (Olea europaea L.). Euphytica 116:131–142

    Article  CAS  Google Scholar 

  • Colomer R, Moreno-Nogueira JM, Garcia-Luna PP, Garcia-Peris P, Garcia-de-Lorenzo A, Zarazaga A, Quecedo L, del Llano J, Usan L, Casimiro C (2007) Fatty acids, cancer and cachexia: a systematic review of the literature. Br J Nutr 97:823–831

    Article  CAS  PubMed  Google Scholar 

  • Contento A, Ceccarelli M, Gelati, MT, Maggini F, Baldoni L, Cionini PG (2002) Diversity of Olea genotypes and the origin of cultivated olives. Theor Appl Genet 104:1229–1238

    Google Scholar 

  • Cooke J, Willis T, Groves R (2005) Impacts of woody weeds on Cumberland plain woodland biodiversity. In: The ecology and management of Cumberland plain habitats. University of West Sydney, Campbelltown, Australia

    Google Scholar 

  • Cresti M, Linskens HF, Mulcahy DL, Bush S, Di Stilio V, Xu MY, Vignani R, Cimato A (1996) Preliminary communication about the identification of DNA in leaves and in olive oil of Olea europaea. Adv Hortic Sci 10:105–107

    Google Scholar 

  • Cronquist (1981) An integrated system of classification of flowering plants. Columbia University Press, New York, NY

    Google Scholar 

  • Crossman ND (2002) The impact of the European olive (Olea europaea L. subsp. europaea) on grey box (Eucalyptus microcarpa Maiden) woodland in South Australia. Plant Protect Q 17:140–146

    Google Scholar 

  • Crossman ND, Bass DA, Virtue JG, Jupp PW (2002) Feral olives (Olea europaea L.) in southern Australia: an issue of conservation concern. Adv Hortic Sci 16:17583

    Google Scholar 

  • D’Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163

    Article  PubMed  CAS  Google Scholar 

  • D’Angeli S, Gutiérrez-Pesce P, Altamura MM, Biasi R, Ruggier, B, Muganu M, Bressan R, Rugini E (2001) Genetic transformation of olive tree (Olea europaea L.) with osmotin gene and in situ protein localisation in the transgenic tissues. In: Proc Società Italiana di Genetica Agraria, Salsomaggiore Terme, 26–29 Sept 2001. ISBN 88-900622-1-5

    Google Scholar 

  • Darmency H (1997) Gene flow between crops and weeds: Risk for new herbicide resistance weeds? In: De Prado R, Jorrín J, García-Torres L (eds) Weed and crop resistance to herbicides. Kluwer, Dordrecht, The Netherlands, pp 239–248

    Google Scholar 

  • De Candolle A (1883) Origine des Plantes Cultivées, 2nd edn. Germer Baillière, Paris, France

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Ymakado M (1997) Selection of marker free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121

    Article  CAS  PubMed  Google Scholar 

  • Ellis SKB, Kelly EF, Knowlton S (1996) Improved oxidative stability of high oleic acid soybean oil. In: 87th annual meeting of the American oil chemists’ society,Indianapolis, Indiana, USA, 22–24 June 1996, p 273

    Google Scholar 

  • Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H (2001) The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SRI). Plant Cell Rep 20:60–66

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Google Scholar 

  • Fabbri A, Hormaza JI, Polito VS (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Am Soc Hortic Sci 120:538–542

    CAS  Google Scholar 

  • Fabbri A, Bartolini G, Lambardi M, Kailis S (2004) Olive propagation manual. CSIRO, Collingwood, Australia

    Google Scholar 

  • Fabiani R, De Bartolomeo A, Rosignoli P, Servili M, Montedoro GF, Morozzi G (2002) Eur J Cancer Prev 11:351

    Article  CAS  PubMed  Google Scholar 

  • Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT, Weber P (1995) Transgenic canola and soybean seeds with increase lysine. Biotechnology 13:577–582

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2007) http://faostat.fao.org

  • Fontanazza G (1987) Presentiamo la cultivar 1-77. Terra e Vita 46:10–11

    Google Scholar 

  • Fontanazza G (1993) Olivicoltura Intensiva Meccanizzata. Edagricole, Bologna, Italy, 312 p

    Google Scholar 

  • Fontanazza G, Bartolozzi F (1998) Olive. In: Scarascia-Mugnozza GT, Pagnotta MA (eds) Italian contribution to plant genetics and breeding. University of Tuscia, Viterbo, Italy, pp 723–748

    Google Scholar 

  • Fontanazza U, Baldoni L, Corona C (1990) Osservazioni preliminari sul valor agronomico di una nuova cultivar da olio: “Fs-17”. In: Proc Problematiche qualitative dell’olio d’oliva. Accademia Nazionale dell’Olivo, Spoleto, Italy, pp 69–75

    Google Scholar 

  • Galla G, Barcaccia G, Ramina A, Alagna F, Baldoni L, Cultrera NGM, Martinelli F, Sebastiani L, Tonutti P (2009) Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biol 9:128

    Article  PubMed  CAS  Google Scholar 

  • Ganino T, Bartolini G, Fabbri A (2006) The classification of olive germplasm. J Hortic Sci Biotechnol 81:319–334

    Google Scholar 

  • Gasse F, Téhet R, Durand A, Gibert E, Fontes JC (1990) The arid–humid transition in the Sahara and the Sahel during the last deglaciation. Nature 346:141–146

    Article  Google Scholar 

  • Gemas VJ, Rijo-Johansen MJ, Tenreiro R, Fevereiro P (2000) Inter- and intra-varietal analysis of three Olea europaea L. cultivars using the RAPD techniques. J Hortic Sci Biotechnol 75:312–319

    CAS  Google Scholar 

  • Giannoulia K, Haralampidis K, Poghosyan Z, Murphy DJ, Hatzopoulos P (2000) Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues. Biochem Soc Trans 28:695–697

    Article  CAS  PubMed  Google Scholar 

  • Giannoulia K, Banilas G, Hatzopoulos P (2007) Oleosin gene expression in olive. J Plant Physiol 164:104–107

    Article  CAS  PubMed  Google Scholar 

  • Gillies ACM, Cornelius JP, Newton AC, Navarro C, Hernández M, Wilson J (1997) Genetic variation in Costa Rica populations of the tropical timber species Cedrela odorata L, assessed using RAPDs. J Mol Ecol 6:1133–1145

    Google Scholar 

  • Graham J, Greig K, McNicol RJ (1996) Transformation of blueberry without antibiotic selection. Ann Appl Biol 128:557–564

    Article  CAS  Google Scholar 

  • Green PS (1996) Taxonomic notes on asiatic Chionanthus (Oleaceae). Kew Bull 51:765–770

    Article  Google Scholar 

  • Green PS (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140

    Article  Google Scholar 

  • Green PS, Wickens GE (1989) The Olea europaea complex. In: Tan K (ed) The Davis and Hedge Festschrift. Edinburgh Universitty Press, Edinburgh, UK, pp 287–299

    Google Scholar 

  • Griggs WH, Hartmann HT, Bradley MV, Iwakiri BT, Whisler JE (1975) Olive pollination in California. California Agricultural Experimental Station Bulletin 869

    Google Scholar 

  • Grillo S, Leone A, Xu Y, Tucci M, Arancione R, Hasegawua PM, Monti L, Bressan RA (1995) Control of osmotin gene expression by ABA and osmotic stress in vegetative tissue of wild type and ABA-deficient mutants of tomato. Physiol Plant 93:498–504

    Article  CAS  Google Scholar 

  • Gutiérrez-Pesce P, Rugini E (2008) Kiwifruit. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 5, Transgenic tropical and subtropical fruits and nuts. Blackwell, Oxford, UK, pp 185–212

    Google Scholar 

  • Gutiérrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock “Colt” (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreicher PH, Stocker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  CAS  PubMed  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep 18:76–81

    Article  CAS  Google Scholar 

  • Hamman-Khalifa A, Castro AJ, Jiménez-López JC, Rodríguez-García MI, Alché JD (2008) Olive cultivar origin is a major cause of polymorphism for Ole e 1 pollen allergen. BMC Plant Biol 8:10

    Article  PubMed  CAS  Google Scholar 

  • Hannachi H, Breton C, Msallem M, El Hadj SB, El Gazzah M, Bervillé A (2008) Differences between native and introduced olive cultivars as revealed by morphology of drupes, oil composition and SSR polymorphisms: a case study in Tunisia. Sci Hortic 116:280–290

    Article  CAS  Google Scholar 

  • Haralampidis K, Milioni D, Sanchez J, Baltrusch M, Heinz E, Hatzopoulos P (1998) Temporal and transient expression of stearoyl-ACP carrier protein desaturase gene during olive fruit development. J Exp Bot 49:1661–1669

    Article  CAS  Google Scholar 

  • Hartmann HT (1962) Olive growing in Australia in 1962. Econ Bot 16:31–44

    Article  Google Scholar 

  • Hatzopoulos P, Banilas G, Giannoulia K, Gazis F, Nikoloudakis N, Milioni D, Haralampidis K (2002) Breeding, molecular markers and molecular biology of the olive tree. Eur J Lipid Sci Technol 104:574–586

    Article  CAS  Google Scholar 

  • Heenan PB, de Lange PJ, Glenny DS, Breitwieser I, Brownsey PJ, Ogle CC (1999) Checklist of dicotyledons, gymnosperms, and pteridophytes naturalised in New Zealand: additional records 1997–1998. NZ J Bot 37:629–642

    Google Scholar 

  • Hess J, Kadereit W, Vargas P (2000) The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Mol Ecol 9:857–868

    Article  CAS  PubMed  Google Scholar 

  • Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P (1991) Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Hossein Ava S, Hajnajari H (2006) Obtaining embryo rescued hybrid plants of olive (Mary × Roghani M.) in cross breeding for precocity induction. In: Proceedings of the second international seminar on biotechnology and quality of olive tree products around the Mediterranean basin, Marsala, Italy, 5–10 Nov 2006, pp 27–29

    Google Scholar 

  • Huang Y, Nordeen RO, Di M, Owens LD, McBeath JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv. tabaci. Mol Plant Pathol 87:494–499

    CAS  Google Scholar 

  • Husband BC, Barrett SCH (1991) Colonisation history and population genetic structure of Eichornia paniculata in Jamaica. Heredity 66:287–296

    Article  Google Scholar 

  • Iwai K, Oi Y, Koyama F, Watanabe K, Hiraoka M, Sekiguchi T (2005) Patent Application: JP 2004-342612 20041126, Jap Kokai Tokkyo Koho

    Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1993) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  Google Scholar 

  • Jänicke C, Grünwald J, Brendler T (2008) Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytother Res 22:1239–1242

    Article  Google Scholar 

  • Japon-Lujan R, Luque de Castro MD (2006) Superheated liquid extraction of oleuropein and related biophenols from olive leaves. J Chromatogr 1136(2):185–191

    Google Scholar 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461

    CAS  PubMed  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  Google Scholar 

  • Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulus P (1998) Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeat DNA sequences in the genus Olea. Genome 41:527–534

    Article  CAS  PubMed  Google Scholar 

  • Kinney AJ (1995) Improving soybean seed quality. In: Proceedings of symposium on induced mutations and molecular techniques for crop improvement, Vienna, Austria, 19–23 June 1995, pp 101–103

    Google Scholar 

  • Kinney AJ (1996a) Designer oils for better nutrition. Nat Biotechnol 14:946

    Article  CAS  PubMed  Google Scholar 

  • Kinney AJ (1996b) Development of genetically engineered soybean oils for food applications. J Food Lipids 3:273–292

    Article  CAS  Google Scholar 

  • Kinney AJ (1997) Genetic engineering of oilseeds for desired traits. Genet Eng 19:149–166

    CAS  Google Scholar 

  • Knutson DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by anti-sense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89:2624–2628

    Article  Google Scholar 

  • Koukidou M, Klinakis A, Reboulakis C, Zagoraiou L, Tavernarakis N, Livadaras I, Economopoulos A, Savakis C (2006) Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Mol Biol 15:95–103

    Article  CAS  PubMed  Google Scholar 

  • Kubo A, Lunde CS, Kubo I (1995) Antimicrobial activity of the olive oil flavor compounds. J Agric Food Chem 43:1629–1633

    Article  CAS  Google Scholar 

  • Lambardi M, Amorosi S, Caricato G, Benelli C, Branca C, Rugini E (1999) Microprojectile-DNA delivery in somatic embryos of olive (Olea europaea L.). Acta Hortic 474:505–509

    CAS  Google Scholar 

  • Lavee S (1996) Biology and physiology of the olive. In: IOOC (ed) World olive encyclopaedia. Plaza & JanÕs Editorial, Barcelona pp 59–110, 180–182

    Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leòn L, De la Rosa R, Gracia A, Barranco D, Rallo L (2008) Fatty acid composition of advanced olive selections obtained by crossbreeding. J Sci Food Agric 88:1921–1926

    Article  CAS  Google Scholar 

  • Leva AR, Muleo R, Petruccelli R (1995) Long-term somatic embryogenesis from immature olive cotyledons. J Hortic Sci 70:417–421

    Google Scholar 

  • Liccardi G, D'Amato M, D'Amato G (1996) Oleaceae pollinosis: a review. Int Arch Allergy Immunol 111:210–217

    Article  CAS  PubMed  Google Scholar 

  • Liphschitz N, Gophna R, Hartman M, Biger G (1991) The beginning of olive (Olea europaea) cultivation in the Old World: a reassessment. J Archaeol Sci 18:441–453

    Article  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91:1888–1892

    Article  CAS  PubMed  Google Scholar 

  • Lombardi JA (2006) Chionanthus greenii (Oleaceae), a new species from Minas Gerais, Brazil. Kew Bull 61:179–182

    Google Scholar 

  • Lorite P, Garcia MF, Carrello JA, Palomeque T (2001) A new repetitive DNA sequence family in the olive (Olea europaea L.). Hereditas 134:73–78

    Article  CAS  PubMed  Google Scholar 

  • Loukas M, Krimbas B (1983) History of olive cultivars based on their genetic distances. J Hortic Sci 58:121–127

    Google Scholar 

  • Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol 54:21–25

    Article  CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure of plant populations. Ann Rev Ecol Syst 15:65–95

    Google Scholar 

  • Lovisolo C, Secchi F, Cardini A, Salleo S, Buffa R, Schubert A (2007) Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiol Plant 130:543–551

    Article  CAS  Google Scholar 

  • Lumaret R, Ouazzani N (2001) Ancient wild olives in Mediterranean forests. Nature 413:700

    Article  CAS  PubMed  Google Scholar 

  • Lumaret R, Ouazzani N, Michaud H, Villemur P (1997) Cultivated olive and oleaster: two closely connected partners of the same species (Olea europaea L.): evidence from allozyme polymorphism. Bocconea 7:39–42

    Google Scholar 

  • Lumaret R, Ouazzani N, Michaud H, Vivier G, Deguilloux M-F, Di Giusto F (2004) Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean Basin. Heredity 92:343–351

    Article  CAS  PubMed  Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnol 13:486–492

    Google Scholar 

  • Maguire TL, Sedgley M (1997) Genetic diversity in Banksia and Dryandra (Proteaceae) with emphasis on Banksia cuneata, a rare and endangered species. Heredity 79:396–401

    Article  Google Scholar 

  • Martsinkovskaya AI, Poghosyan ZP, Haralampidis K, Murphy DJ, Hatzopoulos P (1999) Temporal and spatial gene expression of cytochrome b5 during flower and fruit development in olives. Plant Mol Biol 40:79–90

    Article  CAS  PubMed  Google Scholar 

  • Mazzolani G, Altamura Betti MM (1976) Elementi per la revisione del genere Olea (Tourn.). Nota introduttiva. Ann Bot (Roma) 35–36:463–469

    Google Scholar 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inzé D, D’Hallewin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L). Plant Physiol 103:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Médail F, Quézel P, Besnard G, Khadari B (2001) Systematics, ecology and phylogeographic significance of Olea europaea L. subsp. maroccana (Greuter & Burdet) P. Vargas et al., a relictual olive tree in south-west Morocco. Bot J Linn Soc 137:249–266

    Google Scholar 

  • Mekuria GT, Collins GG, Sedgley M (1999) Genetic variability between different accessions of some common commercial olive cultivars. J Hortic Sci Biotechnol 74:309–314

    Google Scholar 

  • Mekuria GT, Collins G, Sedgley M (2002) Genetic diversity within an isolated olive (Olea europaea L.) population in relation to feral spread. Sci Hortic 94:91–105

    Article  Google Scholar 

  • Mencuccini M (1991) Protoplast culture isolated from different tissues of olive (Olea europoea L.) cultivars. Physiol Plant 82:14 (Abstract)

    Google Scholar 

  • Mencuccini M, Rugini E (1993) In vitro shoot regeneration from Olive cultivar tissue. Plant Cell Tissue Org Cult 32:283–288

    Article  CAS  Google Scholar 

  • Mendoza-De Gyves E, Rosana Mira F, Ruiu F, Rugini E (2008) Stimulation of node and lateral shoot formation in Micropropagation of olive (Olea europea L.) by using dikegulac. Plant Cell Tissue Org Cult 92:233–238

    Article  CAS  Google Scholar 

  • Mercier J (1997) Phytochemistry of fruits and vegetables. Clarendon, Oxford, UK

    Google Scholar 

  • Mercuri A, Bruna S, De Benedetti L, Burchi G, Schiva T (2001) Modification of plant architecture in Limonium spp. induced by rol genes. Plant Cell Tissue Org Cult 65:247–253

    Article  CAS  Google Scholar 

  • Miano D, Gutiérrez Pesce P, Lupi R, Dradi G, Roncasaglia R, Taratufolo C, Rugini E, Muleo R (2004) rolABC genes are differently regulated in the organs and modify gene expression and morphology of olive cultivar ‘Canino’. In: Proceedings of XLVIII Italian society of agricultural genetics SIFV-SIGA, Joint Meeting, Lecce, Italy, 15–18 Sept 2004, Poster Abstract

    Google Scholar 

  • Micheli M, Mencuccui M, Standardi A (1998) Encapsulation of in vitro proliferated buds of olive. Adv Hort Sci 12:163–168

    Google Scholar 

  • Mills D, Hammerschlag FA, Nordeen RO, Owens LD (1994) Evidence for the breakdown of cecropin B by proteinases in the intercellular fluid of peach leaves. Plant Sci 104:17–22

    Article  CAS  Google Scholar 

  • Milne RI, Abbott RJ (2004) Geographic origin and taxonomic status of the invasive Privet, Ligustrum robustum (Oleaceae), in the Mascarene Islands, determined by chloroplast DNA and RAPDs. Heredity 92:78–87

    Article  CAS  PubMed  Google Scholar 

  • Minelli S, Maggini F, Gelati MT, Angiolillo A, Cionini PG (2000) The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in situ hybridization of highly repeated DNA sequences. Chrom Res 8:615–619

    Article  CAS  PubMed  Google Scholar 

  • Mitrakos K, Alexaki A, Papadimitriou P (1992) Dependence of olive morphogenesis on callus origin and age. J Plant Physiol 139:269–273

    Google Scholar 

  • Morettini A (1972) Olivicoltura. Reda, Roma, Italy

    Google Scholar 

  • Mourgues F, Brisset MN, Chevreau E (1998) Strategies to improve plant resistance to bacterial diseases through genetic engeneering. Trends Biotechnol 16:203–210

    Article  CAS  PubMed  Google Scholar 

  • Mulé R, Fodale AS, Parlanti MVM, Tucci A (1992) Tonda dolce Partanna: nuova varietÁ di olivo da mensa a maturazione precocissima. Riv Frutt11:25–29

    Google Scholar 

  • Muleo R, Morini S (2008) Physiological dissection of blue and red light regulation of apical dominance and branching in M9 apple rootstock growing in vitro. J Plant Physiol 165:1838–1846

    Article  CAS  PubMed  Google Scholar 

  • Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52:252–260

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Muranaka T, Ishige F, Akutsu K, Oeda K (1997) Fungal and bacterial disease resistance in transgenic plants expressing human lysozyme. Plant Cell Reports 16:674–679

    Google Scholar 

  • Nardini A, Gascò A, Raimondo F, Gortan E, Lo Gullo MA, Caruso T, Salleo S (2006) Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency? Tree Physiol 26:1137–1144

    PubMed  Google Scholar 

  • Norelli JL, Aldwinckle HS, Destefano-Beltran L, Jaynes JM (1994) Transgenic ‘Malling 26' apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128

    Article  CAS  Google Scholar 

  • North GB, Martre P, Nobel PS (2004) Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil. Plant Cell Environ 27:219–228

    Article  CAS  Google Scholar 

  • Oeller PW, Ming-Wong T, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439

    Article  CAS  PubMed  Google Scholar 

  • Olmstead RG, Kim KJ, Jansen RK, Wagstaff SJ (2000) The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Mol Phylogenet Evol 16:96–112

    Article  CAS  PubMed  Google Scholar 

  • Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var. sylvestris (Miller) Lehr mature zygotic embryos. Plant Cell Tissue Org Cult 27:183–187

    Article  Google Scholar 

  • Ouazzani N, Lumaret R, Villemur P, Di Giusto F (1993) Leaf allozyme variation in cultivated and wild olive trees (Olea europaea L.). J Hered 84:34–42

    CAS  Google Scholar 

  • Ouazzani N, Lumaret R, Villemur P (1996) Genetic variation in the olive tree (Olea europaea L.) cultivated in Morocco. Euphytica 91:9–20

    Article  Google Scholar 

  • Owen CA, Bita EC, Banilas G, Hajjar SE, Sellianakis V, Aksoy U, Hepaksoy S, Chamoun R, Talhook SN, Metzidakis I, Hatzopoulos P, Kalaitzis P (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean. Theor Appl Genet 110:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Palamarev E (1989) Paleobotanical evidences of the tertiary history and origin of the Mediterranean sclerophyll dendro-flora. Plant Syst Evol 162:93–107

    Article  Google Scholar 

  • Pannelli G, Famiani F, Rugini E, Bignami D, Natali S (1990) Preliminary characteristics of olive somatic mutants from gamma irradiated ‘Frantoio’ and ‘Leccino’ plantlets. Acta Hortic 286:77–80

    Google Scholar 

  • Pannelli G, Volpe D, Preziosi P, Famiani F (1993) Comparison of the vegetative and reproductive characteristics of traditional olive cultivar and selected low vigorous accessions in central Italy. Acta Hortic 356:123–126

    Google Scholar 

  • Pannelli G, Rosati S, Rugini E (2002) The effect of rootstocks on frost tolerance a on some aspects of plant behaviour in Moraiolo and S. Felice olive cultivars. Acta Hortic 586:247–250

    Google Scholar 

  • Pannelli G, Rosati A, Pandolfi S, Padula G, Mennone C, Giordani E, Bellini E (2006) Field evaluation of olive selections derived from a breeding program. In: Proceedings of the second international seminar olivebioteq, “Biotechnology and quality of olive tree products around the Mediterranean basin”, Mazara del Vallo (TP), 5–10 November, 1:95–102

    Google Scholar 

  • Parlati MV, Bellini E, Perri E, Pandolfi S, Giordani E, Martelli S (1994) Genetic improvement of olive: initial observations on selections made in Florence. Acta Hortic 356:87–90

    Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619

    Article  CAS  Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737

    Article  CAS  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Biotechnology 19:263–267

    Article  CAS  Google Scholar 

  • Pereira AP, Ferreira ICFR, Marcelino F, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereira JA (2007) Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 12:1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Perl A, Eshdat Y (1998) DNA transfer and gene expression in transgenic grapes. Biotechnol Genet Eng Rev 15:365–386

    CAS  Google Scholar 

  • Perri E, Parlati MV, Rugini E (1994a) Isolation and culture of olive (Olea europaea L.) cultivar protoplasts. Acta Hortic 356:51–53

    Google Scholar 

  • Perri E, Parlati MV, Mulé R, Fodale AS (1994b) Attempts to generate haploid plants from in vitro cultures of Olea europaea L. anthers. Acta Hortic 356:47–50

    Google Scholar 

  • Perrinjaquet-Moccetti T, Busjahn A, Schmidlin C, Schmidt A, Bradl B, Aydogan C (2008) Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytother Res 22:1239–1242

    Article  PubMed  Google Scholar 

  • Petkov V, Manolov P (1978) Pharmacological studies on substances of plant origin with coronary dilatating and antiarrhythmic action. Comp Med East West 6:123–130

    Article  CAS  PubMed  Google Scholar 

  • Poghosyan ZP, Haralampidis K, Martinkovskaya AI, Murphy DJ, Hatzopoulos P (1999) Developmental regulation and spatial expression of a plastidial fatty acid desaturase from Olea europaea. Plant Physiol Biochem 37:109–119

    Article  CAS  Google Scholar 

  • Proietti P, Tombesi A (1996) Translocation of assimilates and source-sink influences on productive characteristics of the olive tree. Adv Hortic Sci 1:11–14

    Google Scholar 

  • Psomiadou E, Tsimidou M, Boskou D (2000) α- Tocopherol content of Greek virgin olive oils. J Agric Food Chem 48:1770–1775

    Article  CAS  PubMed  Google Scholar 

  • Qiusheng Z, Yuntao Z, Rongliang Z, Dean G, Changling L (2005) Effects of verbascoside and luteolin on oxidative damage in brain of heroin treated mice. Pharmazie 60:539–543

    PubMed  Google Scholar 

  • Quézel P (1969) Flore et végétation des plateaux du Darfur Nord-occidental et du Jebel Gourgeil. Dossiers de la RCP, vol 45. CNRS, Marseille

    Google Scholar 

  • Quézel P (1978) Analysis of the flora of Mediterranean and Saharan Africa. Ann MO Bot Gard 65:479–534

    Article  Google Scholar 

  • Rahman SM, Kinoshita T, Anai T, Takagi Y (2001) Combining ability in loci for high oleic and low linolenic acids in soybean. Crop Sci 41:26–29

    Article  CAS  Google Scholar 

  • Rallo P, Dorado G, Martín A (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989

    Article  CAS  Google Scholar 

  • Rallo P, Tenzer I, Gessler C, Baldoni L, Dorado G, Martín A (2003) Transferability of olive microsatellite loci across the genus Olea. Theor Appl Genet 107:940–946

    Article  CAS  PubMed  Google Scholar 

  • Reale S, Angiolillo A, Baldoni L, D’Andrea M, Lima G, Scarano MT (2006) Olive authochthonous germplasm of Molise: molecular characterization by means of SSRs and SNPs. In: Proceedings of second international seminar on biotechnology and quality of olive tree products around the Mediterranean basin, Marsala, Italy, 5–10 Nov 2006, pp 195–198

    Google Scholar 

  • Reichelt K, Burr M (1997) Extra virgin: an Australian companion to olives and olive oil. Wakefield, Adelaide, Australia

    Google Scholar 

  • Revilla MA, Pacheco J, Casares A, RodrÚguez R (1996) In vitro reinvigoration of mature olive trees (Olea europea L.) through micrografting. In Vitro Cell Dev Biol Plant 32:257–261

    Google Scholar 

  • Ripa V, De Rose F, Tucci A, Scalercio S, Tucci P, Pellegrino M (2006) Preliminary observations on the agronomical behaviour of olive cross breedings cultivated in Rossano Calabro. In: Proceedings of second international seminar on biotechnology and quality of olive tree products around the Mediterranean basin, Marsala, Italy, 5–10 Nov 2006, pp 139–142

    Google Scholar 

  • Rodríguez R, Villalba M, Monsalve RI, Batanero E, González EM, Monsalve RI, Huecas S, Tejera ML, Ledesma A (2002) Allergenic diversity of the olive pollen. Allergy 57:6–15

    Article  PubMed  Google Scholar 

  • Roselli U, Donini B (1982) Briscola. Nuova cultivar di olivo a sviluppo compatto. Riv Ortoflorofrutticolt Ital 66:103–114

    Google Scholar 

  • Rotino GL, Perri E, Zottini M, Sommer H, Spena A (1997) Genetic engineering of parthenocarpic plants. Nat Biotechnol 15:1398–1401

    Article  CAS  PubMed  Google Scholar 

  • Rotondi A, Bertazza G, Magli M (2004) Effect of olive fruits quality on the natural antioxidant compounds in extravirgin olive oil of Emilia-Romagna region. Prog Nutr 6:139–145

    CAS  Google Scholar 

  • Rubio de Casas R, Besnard G, Schoenswetter P, Balaguer L, Vargas P (2006) Extensive gene flow blurs phylogeographic but not phylogenetic signal in Olea europaea L. Theor Appl Genet 113:575–583

    Article  CAS  PubMed  Google Scholar 

  • Rugini E (1984) In vitro propagation of some olive (Olea europaea L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic 24:123–134

    Article  CAS  Google Scholar 

  • Rugini E (1986) Olive. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10. Springer, Berlin, pp 253–267

    Google Scholar 

  • Rugini E (1988) Somatic embryogenesis and plant regeneration in olive (Olea europaea L.). Plant Cell Tissue Org Cult 14:207–214

    Article  Google Scholar 

  • Rugini E (1992) Involvement of polyamines in auxin and Agrobacterium rhizogenes-induced rooting of fruit trees in vitro. J Am Soc Hortic Sci 117:532–536

    CAS  Google Scholar 

  • Rugini E (1995) Somatic embryogenesis in olive (Olea europaea L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer, Dordrecht, The Netherlands, pp 171–189

    Google Scholar 

  • Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.)\ “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260

    Article  CAS  Google Scholar 

  • Rugini E, Fedeli E (1990) Olive (Olea europaea L.) as an oilseed crop. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10: Legumes and oilseed crops I. Springer, New York, pp 593–641

    Google Scholar 

  • Rugini E, Lavee S (1992) Olive biotechnology. In: Hammerschlag FA, Litz R (eds) Biotechnology of perennial fruit crops. CABI, Wallingford, UK, pp 371–382

    Google Scholar 

  • Rugini E, Mariotti D (1992) Agrobacterium rhizogenes T-DNA genes and rooting in woody species. Acta Hortic 300:301–308

    Google Scholar 

  • Rugini E, Muganu M (1998) A novel strategy for the induction and maintenance of shoot regeneration from callus derived from established shoots of apple [Malus × domestica BorkH.] cv. golden delicious. Plant Cell Rep 17:581–585

    Article  CAS  Google Scholar 

  • Rugini E, Tarini P (1986) Somatic embryogenesis in olive (Olea europaea L.). In: Proceedings of conference on fruit tree biotechnology, Montecarlo, Italy, 14–15 Oct 1986, p 62

    Google Scholar 

  • Rugini E, Bazzoffia A, Jacoboni A (1987) A simple in vitro method to avoid the initial dark period and to increase rooting in fruit trees. Acta Hortic 227:438–440

    Google Scholar 

  • Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D (1991) Increase of rooting ability in the woody species Kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes T-DNA rol genes. Plant Cell Rep 10:291–295

    Article  CAS  Google Scholar 

  • Rugini E, Pannelli G, Ceccarelli M, Muganu M (1996) Isolation of triploid and tetraploid olive (Olea europaea L.) plants from mixoploid cv. ‘Frantoio’ and ‘Leccino’ mutants by in vivo and in vitro selection. Plant Breed 115:23–27

    Article  Google Scholar 

  • Rugini E, Caricato G, Muganu M, Taratufolo C, Camilli M, Cammilli C (1997) Genetic stability and agronomic evaluation of six-year-old transgenic kiwi plants for rolABC and rolB genes. Acta Hortic 447:609–610

    Google Scholar 

  • Rugini E, Gutiérrez-Pesce P, Spampanato PL, Ciarmiello A, D’Ambrosio C (1999) New perspective for biotechnologies in olive breeding: morphogenesis, in vitro selection and gene transformation. Acta Hortic 474:107–110

    Google Scholar 

  • Rugini E, Biasi R, Muleo R (2000) Olive (Olea europaea var. sativa) transformation. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer, Dordrecht, Netherlands, pp 245–279

    Google Scholar 

  • Rugini E, Gutiérrez-Pesce P, Muleo R (2008) Olive. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 4, Transgenic temperate fruits and nuts. Blackwell, Oxford, UK, pp 233–258

    Google Scholar 

  • Sabino Gil F, Busconi M, Da Câmara MA, Fogher C (2006) Development and characterization of microsatellite locifrom Olea europaea. Mol Ecol Notes 6:1275–1277

    Article  CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 146:1568–1577

    Google Scholar 

  • Salzman RA, Tikhonova I, Bordelon BP, Hasegawa PM, Bressan RA (1998) Coordinate accumulation of antifungal proteins and hexoses constitutesa developmentally controlled defence response during fruit ripening in grape. Plant Physiol 117:465–472

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Cortez F, Badenes ML, Paz S, Iniguez A, Llacer G (2001) Molecular characterization of olive cultivars using RAPD markers. J Am Soc Hortic Sci 126:7–12

    Google Scholar 

  • Sarri V, Baldoni L, Porceddu A, Cultrera NGM, Contento A, Frediani M, Belaj A, Trujillo I, Cionini PG (2006) Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographicall defined populations. Genome 49:1606–1615

    Article  CAS  PubMed  Google Scholar 

  • Schaffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert A (2007a) Isolation and functional characterization of three aquaporins from olive (Olea europea L). Planta 225:381–392

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Lovisolo C, Schubert A (2007b) Expression of OePIP2.1 aquaporin gene and water relations of Olea europaea twigs during drought stress and recovery. Ann Appl Biol 150:163–167

    Article  CAS  Google Scholar 

  • Sefc KM, Lopes MS, Mendonça D, Rodrigues dos Santos M, da Câmara MM, da Câmara MA (2000) Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1193

    Article  CAS  PubMed  Google Scholar 

  • Servili M, Selvaggini R, Esposito S, Taticchi A, Montedoro GF, Morozzi GJ (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J Chromatogr A 1054:113–127

    CAS  PubMed  Google Scholar 

  • Shahidi F (1996) Natural antioxidants chemistry, health effect and applications. AOCS, Champaign, IL

    Google Scholar 

  • Shibuya M, Zhang H, Endo A, Shishikura K, Kushiro T, Ebizuka Y (1999) Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur J Biochem 266:302–307

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 15:519–550

    Article  CAS  PubMed  Google Scholar 

  • Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42:686–693

    Article  CAS  PubMed  Google Scholar 

  • Smith CJS, Watson CF, Morris PC, Bird CR, Morris PC, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724–726

    Article  CAS  Google Scholar 

  • Spennemann DHR, Allen LR (2000) Feral olives (Olea europaea) as future woody weeds in Australia: a review. Aust J Exp Agric 40:889–901

    Article  Google Scholar 

  • Starr F, Starr K, Loope L (2003) Plants of Hawaii. http://www.hear.org/starr/hiplants/reports

  • Sweeney S, Davies G (1998) The Olive industry. In: Hide K (ed) The new rural industries: a handbook for farmers and investors. RIRDC, Barton, USA, pp 405–411

    Google Scholar 

  • Terral J-F, Arnold-Simard G (1996) Beginnings of olive cultivation in eastern Spain in relation to Holocene bioclimatic changes. Quaternary Res 46:176–185

    Article  Google Scholar 

  • Terral J-F, Mengüal X (1999) Reconstruction of Holocene climate in southern France and Eastern Spain using quantitative anatomy of olive wood and archaeological charcoal. Palaeogeogr Palaeoclimatol Palaeoecol 153:71–92

    Article  Google Scholar 

  • Terral J-F, Alonso N, Buxó I, Capdevila R, Chatti N, Fabre L, Fiorentino G, Marinval P, Jordá GP, Pradat B, Rovira N, Alibert P (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77

    Google Scholar 

  • Tombesi A (1978) La fertilità nell’olivo. Riv Ortoflorofrutticolt Ital 62:435–450

    Google Scholar 

  • Tucker KJ (1976) Effect of far-red light of the hormonal control of side shoot growth in the tomato. Ann Bot 40:1033–1042

    CAS  Google Scholar 

  • Tulp M, Bruhn JB, Bohlin L (2006) Food for thought. Drug Discovery Today 11(23–24):1115–1121

    Google Scholar 

  • Uccella N (2000) Olive biophenols: biomolecular characterization, distribution and phytoalexin histochemical localization in the drupes. Trends Food Sci Technol 11:315–327

    Article  CAS  Google Scholar 

  • Vaeck M, Raynaerts A, Hofte H, Jansens S, DeBeukeleer M, Dean C, Zabeau M, van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D, Reupold-Popp P, Sandermann H, Langebartels C (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnology 12:165–168

    Article  Google Scholar 

  • van Der Salm TPM, Van Der Toorn CJG, Bouwer R, Ten Cate ChHH, Dons HJM (1997) Production of rol gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol Breed 3:39–47

    Article  Google Scholar 

  • van der Salm TPM, Bouwer R, Van Dijk AJ, Keiser LCP, Ten Cate ChHH, Van der Plas LHW, Dons JJM (1998) Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. J Exp Bot 49:847–852

    Article  Google Scholar 

  • Vandeleur R, Niemietz C, Tilbrook J, Tyerman SD (2005) Roles of aquaporins in root responses to irrigation. Plant Soil 274:141–161

    Article  CAS  Google Scholar 

  • Vargas P, Kadereit JW (2001) Molecular fingerprinting evidence (ISSR, inter-simple sequence repeats) for a wild status of Olea europaea L. (Oleaceae) in the Eurosiberian North of the Iberian Peninsula. Flora 196:142–152

    Google Scholar 

  • Vergari G, Patumi M, Fontanazza G (1996) Utilizzo dei marcatori RAPDs nella caratterizzazione del germoplasma di olivo. Olivae 60:19–22

    Google Scholar 

  • Villalba M, Batanero E, López-Otín C, Sánchez LM, Monsalve RI, González de la Peña MA, Lahoz C, Rodríguez R (1993) The amino acid sequence of Ole e I, the major allergen from olive tree (Olea europaea) pollen. Eur J Biochem 216:863–869

    Article  CAS  PubMed  Google Scholar 

  • Vince-Prue D, Canham AE (1983) Horticultural significance of photomorphogenesis. In: Shropshire W, Mohr H (eds) Encyclopedia of plant physiology. Springer, Berlin, Germany, pp 518–544

    Google Scholar 

  • Visioli F, Bellomo G, Galli C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247:60–64

    Article  CAS  PubMed  Google Scholar 

  • Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on rps 16 and trnL-F sequence data. Am J Bot 87:1827–1841

    Article  CAS  PubMed  Google Scholar 

  • Watts WA, Allen JRM, Huntley B (1996) Vegetation history and palaeoclimate of the last glacial period at Lago Grande di Monticchio, Southern Italy. Quaternary Sci Rev 15:133–153

    Article  Google Scholar 

  • Weisman Z, Avidan N, Lavee S, Quebedeaux B (1998) Molecular characterisation of common olive varieties in Israel and the West Bank using random amplified polymorphic DNA (RAPD) markers. J Am Soc Hortic Sci 123:837–841

    Google Scholar 

  • West CJ (2002) Eradication of allien plants on Raoul Island, Kermadec Islands, New Zealand. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group, Cambridge, pp 365–373

    Google Scholar 

  • Wheeler AW (1992) Hypersensitivity to the allergens of the pollen from olive tree (Olea europaea). Clin Exp Allergy 22:1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Wiesman Z, Avidan N, Lavee S, Quebedeaux B (1998) Molecular characterization of common olive varieties in Israel and the West Bank using randomly amplified polymorphic DNA (RAPD) markers. J Am Soc Hortic Sci 123:837–841

    CAS  Google Scholar 

  • Wu G, Shott BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in trangenic potato plants. Plant Cell 7:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Yadav NS (1996) Genetic modification of soybean oil quality. In: Verma DPS, Shoemaker RC (eds) Soybean genetics: molecular biology and biotechnology. CABI, New York, pp 165–188

    Google Scholar 

  • Yanotsky M (1995) Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annu Rev Plant Physiol Mol Biol 46:167–188

    Article  Google Scholar 

  • Yoshikawa M, Tsuda M, Takeuchi Y (1993) Resistance to fungal diseases in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, -1, 3-endoglucanase from soybean. Naturwissenschaften 80:417–420

    Article  CAS  Google Scholar 

  • Zhu B, Chen TH, Li PH (1993) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol Biol 21:729–735

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Chen TH, Li PH (1995) Expression of three osmotin like protein genes in response to osmotic stress and fungal infection in potato. Plant Mol Biol 28:17–26

    Article  CAS  PubMed  Google Scholar 

  • Zhu LH, Holefors A, Ahlman A, Xue ZT, Welander M (2001) Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zohary D (1994) The wild genetic resources of the cultivated olive. Acta Hortic 356:62–65

    Google Scholar 

  • Zohary D, Hopf M (1994) Olive: Olea europaea. In: Domestication of plants in the old world, 2nd edn. Oxford Claredon, Oxford, UK

    Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187:319–327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rugini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rugini, E., De Pace, C., Gutiérrez-Pesce, P., Muleo, R. (2011). Olea. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_5

Download citation

Publish with us

Policies and ethics