Skip to main content

Evolutionary Computation

  • Chapter
  • First Online:
Evolutionary Statistical Procedures

Part of the book series: Statistics and Computing ((SCO))

  • 1687 Accesses

Abstract

The evolutionary computation methods are introduced by discussing their origin inside the artificial intelligence framework, and the contributions of Darwin’s theory of natural evolution and Genetics. We attempt to highlight the main features of an evolutionary computation method, and describe briefly some of them: evolutionary programming, evolution strategies, genetic algorithm, estimation of distribution algorithms, differential evolution. The remainder of the chapter is devoted to a closer illustration of genetic algorithms and more recent advancements, to the problem of convergence and to the practical use of them. A final section on the relationship between genetic algorithms and random sampling techniques is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formally, convergence to zero could also arise from \(\hat{\theta}(x)-\theta^*(x)\) tending to assume the same values of \(\theta-\theta^*(x)\), but this seems very artificial and unreasonable, thus we shall not admit this possibility

References

  • Alander JT (1992) On optimal population size of genetic algorithms. In: Proceedings of the CompEuro92. IEEE Computer Society Press, Washington, pp 65–70

    Google Scholar 

  • Back T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Battaglia F (2001) Genetic algorithms, pseudo-random numbers generators, and markov chain monte carlo methods. Metron 59(1–2):131–155

    MATH  MathSciNet  Google Scholar 

  • Beyer HG, Schwefel H (2002) Evolution strategies, a comprehensive introduction. Natural Comput 1:3–52

    Article  MATH  MathSciNet  Google Scholar 

  • Davis LD (1991) Handbook of genetic algorithms. Van Nostrand, New York, NY

    Google Scholar 

  • Davis TE, Principe JC (1993) A markov chain framework for the simple genetic algorithm. Evol Comput 1(3):269–288

    Article  Google Scholar 

  • De Jong KA (1993) Genetic algorithms are not function optimizers. In: Whitley D (ed) Foundations of genetic algorithms 2. Morgan Kaufman, San Mateo, CA, pp 1–18

    Google Scholar 

  • Dorigo M, Gambardella M (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Compu 1(1):53–66

    Article  Google Scholar 

  • Drugan M, Thierens D (2004) Evolutionary markov chain monte carlo. In: Liardet P (ed) Proceedings of the 6th International Conference on Artificial evolution - EA 2003. Springer, Berlin, pp 63–76

    Google Scholar 

  • Falkenauer E (1998) Genetic algorithms and grouping problems. Wiley, Chichester

    Google Scholar 

  • Fogel DB (1998) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, New York, NY

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York, NY

    Google Scholar 

  • Gao Y (2003) Population size and sampling complexity in genetic algorithms. GECCO 2003 Workshop on Learning, Adaptation, and Approximation in Evolutionary Computation, 2003, Springer, Berlin Heidelberg, pp 178–181

    Google Scholar 

  • Gilks WR, Richardson R, Spiegelhalter DJ (1996) Markov chain monte carlo in practice. Chapman and Hall/CRC, London

    Google Scholar 

  • Goldberg DE (1989a) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  • Goldberg DE (1989c) Sizing populations for serial and parallel genetic algorithms. In: Schafer JD (ed) Proceedings of the 3rd conference on genetic algorithms. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  • Goldberg DE, Deb KE, Clark JH (1992) Genetic algorithms, noise and the sizing of populations. Complex Syst 6:333–362

    MATH  Google Scholar 

  • Goswami G, Liu JS (2007) On learning strategies for evolutionary monte carlo. Stat Comput 17:23–38

    Article  MathSciNet  Google Scholar 

  • Grefenstette JJ (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst Man Cybern 16(1):122–128

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Holmes CC, Mallick BK (1998) Parallel markov chain monte carlo sampling. mimeo, Department of Mathematics, Imperial College, London

    Google Scholar 

  • Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    Google Scholar 

  • Liang F, Wong WH (2000) Evolutionary monte carlo: applications to c p model sampling and change point problem. Stat Sinica 10(2):317–342

    MATH  Google Scholar 

  • Liang F, Wong WH (2001) Real-parameter evolutionary monte carlo with applications to bayesian mixture models. J Am Stat Assoc 96(454):653–666

    Article  MATH  MathSciNet  Google Scholar 

  • Lozano JA, Larrañaga P, Inza I, Bengoetxea G (2006) Towards a new evolutionary computation: advances in estimation of distribution algorithms. Springer, Berlin

    Google Scholar 

  • Man KF, Tang KS, Kwong S (1999) Genetic algorithms: concepts and designs. Springer, London

    Google Scholar 

  • Marinari E, Parisi G (1992) Simulated tempering: a new monte carlo scheme. Europhys Lett 19:451–458

    Article  Google Scholar 

  • Michalewicz Z (1996a) Genetic algorithms+data structures=evolution programs. Springer, Berlin

    Google Scholar 

  • Mitchell M (1996) An Introduction to genetic algorithms. The MIT Press, Cambridge, MA

    Google Scholar 

  • Price KV, Storn R, Lampinen J (2005) Differential evolution, a practical approach to global optimization. Springer, Berlin

    Google Scholar 

  • Reeves CR, Rowe JE (2003) Genetic algorithms – principles and perspective: a guide to GA theory. Kluwer, London

    Google Scholar 

  • Roberts GO, Gilks WR (1994) Convergence of adaptive direction sampling. J Multivar Anal 49:287–294

    Article  MATH  MathSciNet  Google Scholar 

  • Rudolph G (1997) Convergence properties of evolutionary algorithms. Verlag Dr. Kovač, Hamburg

    Google Scholar 

  • Schmitt LM, Nehainv CL, Fujii RH (1998) Linear analysis of genetic algorithms. Theor comput sci 200:101–134

    Article  MATH  Google Scholar 

  • Shapiro J (2001) Statistical mechanics theory of genetic algorithms. In: Kallel L, Naudts B, Rogers A (eds) Theoretical aspects of genetic algorithms. Springer, Berlin, pp 87–108

    Google Scholar 

  • Smith RE, Forrest S, Perelson AS (1993) Population diversity in an immune system model: implications for genetic search. In: Whitley DL (ed) Foundations of genetic algorithms 2. Morgan Kaufmann, San Mateo, CA, pp 153–165

    Google Scholar 

  • Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed) Proceedings of the 3rd international conference on genetic algorithms. Morgan Kaufmann, Los Altos, CA, pp 2–9

    Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  MathSciNet  Google Scholar 

  • Vose MD (1999) The simple genetic algorithm: foundations and theory. The MIT Press, Cambridge, MA

    Google Scholar 

  • De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive systems. PH.D. thesis, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy

    Google Scholar 

  • Geyer CJ (1991) Markov chain monte carlo maximum likelihood. In: Keramidas EM (ed) Computing science and statistics, Proceedings of the 23rd Symposium on the interface, interface foundation, Fairfax Station, VA, pp 156–163

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE Conference on neural networks, Piscataway, NJ, pp 1942–48

    Google Scholar 

  • Muhlenbein H, Paas G (1996) From recombination of genes to the estimation of distributions I. Binary parameters. Parallel Problem Solving from Nature – PPSN IV, pp 178–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Baragona .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baragona, R., Battaglia, F., Poli, I. (2011). Evolutionary Computation. In: Evolutionary Statistical Procedures. Statistics and Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16218-3_2

Download citation

Publish with us

Policies and ethics