Skip to main content

Pursuit Evasion in Dynamic Environments with Visibility Constraints

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

Abstract

This paper presents a novel approach for the problem of tracking a moving target in a dynamic environment. The robot has to move such that it keeps the target visible for the longest time possible, and at the same time, avoid colliding with any of the moving obstacles. This paper presents a solution that is based on the idea of three interacting components which perform: tracking, collision avoidance and motion selection. The proposed solution is validated using a comprehensive set of simulations, which show that transition from tracking in static environments to tracking in dynamic environments can be done without much loss in robot safety or tracking ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandyopadhyay, T., Li, Y., Ang Jr., M., Hsu, D.: A Greedy Strategy for Tracking a Locally Predictable Target among Obstacles. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2342–2347 (2006)

    Google Scholar 

  2. Bhattacharya, S., Candido, S., Hutchinson, S.: Motion Strategies for Surveillance. In: Proceedings of Robotics: Science and Systems III, Atlanta, GA, USA, pp. 249–256. MIT Press, Cambridge (June 2007)

    Google Scholar 

  3. Bhattacharya, S., Hutchinson, S.: Approximation Schemes for Two-Player Pursuit Evasion Games with Visibility Constraints. In: Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland. MIT Press, Cambridge (June 2008)

    Google Scholar 

  4. The IFR Statistical Department. 2007: 6,5 million robots in operation world-wide (October 2008), http://www.worldrobotics.org (Retrieved February 2009)

  5. Elnagar, A., AlBluwi, I.: Maintaining Visibility of a Moving Target: The Case of An Adaptive Collision Risk Function. To appear in the Proceedings of the International Conference on Soft Computing, Intelligent System and Information gTechnology, ICSIIT (2010)

    Google Scholar 

  6. Elnagar, A., Gupta, K.: Motion prediction of moving objects based on autoregressive model. IEEE Transactions on Systems, Man and Cybernetics, Part A 28(6), 803–810 (1998)

    Article  Google Scholar 

  7. Elnagar, A., Hussein, A.: An adaptive motion prediction model for trajectory planner systems. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 2442–2447 (2003)

    Google Scholar 

  8. Fabiani, P., Gonzalez-Banos, H., Latombe, J., Lin, D.: Tracking a partially predictable target with uncertainties and visibility constraints. Journal of Robotics and Autonomous Systems 38(1), 31–48 (2002)

    Article  MATH  Google Scholar 

  9. Ferguson, D., Kalra, N., Stentz, A.: Replanning with RRTs. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1243–1248 (2006)

    Google Scholar 

  10. Gonzalez-Banos, H., Lee, C., Latombe, J.: Real-time combinatorial tracking of a target moving unpredictably among obstacles. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1683–1690 (2002)

    Google Scholar 

  11. Hsu, D., Kindel, R., Latombe, J., Rock, S.: Randomized Kinodynamic Motion Planning with Moving Obstacles. The International Journal of Robotics Research 21(3), 233–255 (2002)

    Article  MATH  Google Scholar 

  12. Jaillet, L., Simeon, T.: A prm-based motion planner for dynamically changing environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1606–1611 (2004)

    Google Scholar 

  13. Kalman, R.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1), 35–45 (1960)

    Article  Google Scholar 

  14. Kant, K., Zucker, S.: Toward Efficient Trajectory Planning: The Path-Velocity Decomposition. The International Journal of Robotics Research 5(3), 72–89 (1986)

    Article  Google Scholar 

  15. Koenig, S., Likhachev, M.: D* lite. In: Proceedings of the Eighteenth national conference on Artificial intelligence, pp. 476–483. American Association for Artificial Intelligence (2002)

    Google Scholar 

  16. LaValle, S., Gonzalez-Banos, H., Becker, C., Latombe, J.: Motion strategies for maintaining visibility of a moving target. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 731–736 (1997)

    Google Scholar 

  17. Lee, C.: Real-time Target Tracking in an Indoor Environment. PhD thesis, Stanford, CA, USA, Advisor-J.C. Latombe (2002)

    Google Scholar 

  18. Montemerlo, M., Thrun, S., Whittaker, W.: Conditional particle filters for simultaneous mobile robot localization and people-tracking. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 695–701 (2002)

    Google Scholar 

  19. Murrieta, R., Sarmiento, A., Bhattacharya, S., Hutchinson, S.: Maintaining visibility of a moving target at a fixed distance: the case of observer bounded speed. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 479–484 (2004)

    Google Scholar 

  20. Murrieta-Cid, R., Monroy, R., Hutchinson, S., Laumond, J.: A Complexity result for the pursuit-evasion game of maintaining visibility of a moving evader. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2657–2664 (2008)

    Google Scholar 

  21. van den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proceedings of the IEEE international Conference on Robotics and Automation, pp. 2366–2371 (2006)

    Google Scholar 

  22. Vasquez, D., Fraichard, T.: Motion prediction for moving objects: a statistical approach. In: Proceedings of the IEEE international Conference on Robotics and Automation, vol. 4, pp. 3931–3936 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Al-Bluwi, I., Elnagar, A. (2010). Pursuit Evasion in Dynamic Environments with Visibility Constraints. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics