Skip to main content

Tool Path Generation Based on BCELTP for Maximizing Machining Strip Width

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

  • 3190 Accesses

Abstract

In this paper, a new method is proposed to optimize the tool path of 5-axis machining free-form surface based on Basic Curvature Equations of Locally Tool Positioning (BCELTP) [Hu Gong, Li-Xin Cao, Jian Liu. Second order approximation of tool envelope surface for 5-axis machining with single point contact. Computer-Aided Design, 2008; 40: 604-15]. This method can be used to choose local optimum cutting direction with maximum machining strip width easily. Since BCELTP are accurate analytical expressions, the proposed method is accurate and effective in computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gong, H., Fang, F.Z., Hu, X.T., Cao, L.-X., Liu, J.: Optimization of tool positions locally based on the BCELTP for 5-axis machining of free-form surfaces. Computer-Aided Design 42, 558–570 (2010)

    Article  Google Scholar 

  2. Jensen, C.G., Anderson, D.C.: Accurate tool placement and orientation for finished surface. Machining Journal Design and Manufacture 3, 251–261 (1993)

    Google Scholar 

  3. Jensen, C.G., Red, W.E., Pi, J.: Tool selection for five-axis curvature matched machining. Computer-Aided Design 34, 251–266 (2002)

    Article  Google Scholar 

  4. Rao, N., Bedi, S., Buchal, R.: Implementation of the principal-axis method for machining of complex surfaces. International Journal of Advanced Manufacturing Technology 11, 249–257 (1996)

    Article  Google Scholar 

  5. Rao, N., Ismail, F., Bedi, S.: Tool path planning for five-axis machining using the principal axis method. International Journal of machine Tools and Manufacture 37, 1025–1040 (1997)

    Article  Google Scholar 

  6. Lee, Y.-S.: Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Computer-Aided Design 29, 507–521 (1997)

    Article  Google Scholar 

  7. Lee, Y.-S.: Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Computer-Aided Design 30, 559–570 (1998)

    Article  MATH  Google Scholar 

  8. Chiou, C.-J., Lee, Y.-S.: A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Computer-Aided Design 34, 357–371 (2002)

    Article  Google Scholar 

  9. Andrew Warkentin, A., Dedi, S., Ismail, F.: 5-axis milling of spherical surfaces. International Journal of machine Tools and Manufacture 36, 229–243 (1995)

    Article  Google Scholar 

  10. Warkentin, A., Ismail, F., Bedi, S.: Intersection approach to multi-point machining of sculptured surfaces. Computer Aided Geometric Design 14, 567–584 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Warkentin, A., Ismail, F., Bedi, S.: Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces. Computer Aided Geometric Design 17, 83–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Radzevich, S.P.: A closed-form solution to the problem of optimal tool-path generation for sculptured surface machining on multi-axis NC machine. Mathematical and Computer Modelling 43, 222–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Radzevich, S.P.: CAD/CAM of Sculptured surfaces on a multi-axis NC machine. Morgan & Claypool Publishers (2008)

    Google Scholar 

  14. Radzevich, S.P.: Kinematic geometry of surface machining. CPC Press (2008)

    Google Scholar 

  15. Wang, X.C., Ghosh, S.K., Li, Y.B., Wu, X.T.: Curvature catering-a new approach in manufacture of sculptured surfaces (part 1. theorem). Journal of Materials Processing Technology 38, 159–175 (1993)

    Article  Google Scholar 

  16. Rao, A., Sarma, R.: On local gouging in five-axis sculptured surface machining using flat-end tools. Computer-Aided Design 32, 409–420 (2000)

    Article  Google Scholar 

  17. Yoon, J.-H., Pottmann, H., Lee, Y.-S.: Locally optimal cutting positions for 5-axis sculptured surface machining. Computer-Aided Design 35, 69–81 (2003)

    Article  Google Scholar 

  18. Gong, H., Cao, L.-X., Liu, J.: Second order approximation of tool envelope surface for 5-axis machining with single point contact. Computer-Aided Design 40, 604–615 (2008)

    Article  Google Scholar 

  19. Zhu, L.-M., Zhu, H., Xiong, Y.L.: Third Order Point Contact Approach for Five-Axis Sculptured Surface Machining Using Non-ball End Tools -Part I: Third Order Approximation of Tool Envelope Surface. Science in China-Ser. E 53, 1904–1912 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gong, H. (2010). Tool Path Generation Based on BCELTP for Maximizing Machining Strip Width. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics