Skip to main content

Manipulation Primitives — A Universal Interface between Sensor-Based Motion Control and Robot Programming

  • Chapter
Robotic Systems for Handling and Assembly

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 67))

Abstract

This paper introduces a generic framework for sensor-based robot motion control. The key contribution is the introduction of an adaptive selection matrix for sensor-based hybrid switched-system control. The overall control system consists of multiple sensors and open- and closed-loop controllers, in-between which the adaptive selection matrix can switch discretely in order to supply command variables for low-level controllers of robotic manipulators. How control signals are chosen, is specified by Manipulation Primitives, which constitute the interface to higher-level applications. This programming paradigm is formally specified in order to establish the possibility of executing sensor-guided and sensor-guarded motion commands simultaneously and in a very open way, such that any kind and any number of sensors can be addressed. A further key feature of this generic approach is, that the control structure can be directly mapped to a corresponding software architecture. The resulting control system is freely scalable depending on the performance requirements of the desired system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mosemann, H., Wahl, F.M.: Automatic decomposition of planned assembly sequences into skill primitives. IEEE Trans. on Robotics and Automation 17(5), 709–718 (2001)

    Article  Google Scholar 

  2. Finkemeyer, B., Kröger, T., Wahl, F.M.: A Middleware for High-Speed Distributed Real-Time Communication. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 193–212. Springer, Heidelberg (2010)

    Google Scholar 

  3. Steiner, J., Maaß, J., Goltz, U.: Self-Management within a Software Architecture for Parallel Kinematic Machines. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 355–371. Springer, Heidelberg (2010)

    Google Scholar 

  4. Dadji, Y., Michalik, H., Kohn, P.N., Steiner, J., Beckmann, G., Möglich, T., Varchmin, J.-U.: A Communication Architecture for Distributed Real-Time Robot Control. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 213–231. Springer, Heidelberg (2010)

    Google Scholar 

  5. Steiner, J., Diethers, K., Goltz, U.: Model Based Quality Assurance for a Robotic Software Architecture. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 373–389. Springer, Heidelberg (2010)

    Google Scholar 

  6. Maaß, J., Dietrich, F., Hesselbach, J.: RCA562: Control Architecture for Parallel Kinematic Robots. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 315–331. Springer, Heidelberg (2010)

    Google Scholar 

  7. Thomas, U., Wahl, F.M.: Assembly Planning and Task Planning—Two Prerequisites for Automated Robot Programming. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 333–354. Springer, Heidelberg (2010)

    Google Scholar 

  8. Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. on Systems, Man, and Cybernetics 11, 418–432 (1981)

    Article  Google Scholar 

  9. Bruyninckx, H., Schutter, J.D.: Specification of force-controlled actions in the task frame formalism — A synthesis. IEEE Trans. on Robotics and Automation 12(4), 581–589 (1996)

    Article  Google Scholar 

  10. Schutter, J., van Brussel, J.: Compliant robot motion I. A formalism for specifying compliant motion tasks. The International Journal of Robotics Research 7(5), 3–17 (1988)

    Article  Google Scholar 

  11. Schutter, J., van Brussel, J.: Compliant robot motion II. A control approach based on external control loops. The International Journal of Robotics Research 7(4), 18–33 (1988)

    Article  Google Scholar 

  12. Reisinger, T., Kolbus, M., Wobbe, F., Schumacher, W.: Integrated Force and Motion Control of Parallel Robots – Part 2: Constrained Space. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 253–273. Springer, Heidelberg (2010)

    Google Scholar 

  13. Kröger, T., Finkemeyer, B., Wahl, F.M.: A task frame formalism for practical implementations. In: Proc. of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, pp. 5218–5223 (2004)

    Google Scholar 

  14. Villani, L., Schutter, J.D.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, 1st edn., ch. 7, pp. 161–185. Springer, Heidelberg (2008)

    Google Scholar 

  15. Osypiuk, R., Kröger, T.: Parallel Stiffness Actuators with Six Degrees of Freedom for Efficient Force/Torque Control Applications. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly. STAR, vol. 67, pp. 275–291. Springer, Heidelberg (2010)

    Google Scholar 

  16. Hogan, N.: Impedance control: An approach to manipulation. Part I: Theory. Part II: Implementation. Part III: Applications. ASME Journal of Dynamic Systems, Measurment, and Control 107, 1–24 (1985)

    Article  MATH  Google Scholar 

  17. Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. on Robotics and Automation 9(4), 361–373 (1993)

    Article  Google Scholar 

  18. Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. ASME Journal of Dynamic Systems, Measurement and Control 102, 126–133 (1981)

    Article  Google Scholar 

  19. Duffy, J.: The fallacy of modern hybrid control theory that is based on “orthogonal complements” of twist and wrench spaces. Journal of Robotic Systems 7(2), 139–144 (1990)

    Article  MathSciNet  Google Scholar 

  20. Branicky, M.S.: Studies in Hybrid Systems: Modeling, Analysis, and Control. Ph.D. thesis, Electrical Engineering and Computer Science Dept., Massachusetts Institute of Technology (1995), http://dora.cwru.edu/msb/pubs.html (accessed: December 15, 2008)

  21. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. on Automatic Control 43(4), 475–482 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liberzon, D.: Switching in Systems and Control. In: Systems and Control: Foundations and Applications, Birkhäuser, Boston (2003)

    Google Scholar 

  23. Gans, N.R., Hutchinson, S.A.: Stable visual servoing through hybrid switched-system control. IEEE Trans. on Robotics 23(3), 530–540 (2007)

    Article  Google Scholar 

  24. Baeten, J., Schutter, J.D.: Integrated Visual Servoing and Force Control. Springer Tracts in Advanced Robotics, vol. 8. Springer, Heidelberg (2004)

    Google Scholar 

  25. Chaumentte, F., Hutchinson, S.A.: Visual servoing and visual tracking. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, 1st edn., ch. 24, pp. 563–583. Springer, Heidelberg (2008)

    Google Scholar 

  26. Borelly, J.-J., Coste-Maniere, E., Espiau, B., Kapellos, K., Pissard-Gibollet, R., Simon, D., Turro, N.: The orccad architecture. The International Journal of Robotics Research 17(4), 338–359 (1998)

    Article  Google Scholar 

  27. Bruyninckx, H., Soetens, P., Koninckx, B.: The real-time motion core of the orocos project. In: Proc. of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 2766–2771 (2003)

    Google Scholar 

  28. Scheider, S.A., Chen, V.W., Pardo-Castellote, G., Wang, H.H.: Controlshell: A software architecture for complex electromechanical systems. The International Journal of Robotics Research 17(4), 360–380 (1998)

    Article  Google Scholar 

  29. Cortesão, R., Koeppe, R., Hirzinger, G.: Data fusion for robotic assembly tasks based on human skills. IEEE Trans. on Robotics 20(6), 941–952 (2004)

    Article  Google Scholar 

  30. Schutter, J., Laet, T.D., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., Claes, K., Bruyninckx, H.: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. The International Journal of Robotics Research 26(5), 433–454 (2007)

    Article  Google Scholar 

  31. OROCOS Homepage. Open robot control software (2002), http://www.orocos.org (accessed: December 15, 2008)

  32. Bäuml, B., Hirzinger, G.: Agile robot development (aRD): A pragmatic approach to robotic software. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 3741–3748 (2006)

    Google Scholar 

  33. Maaß, J., Steiner, J., Raatz, A., Hesselbach, J., Goltz, U., Amado, A.: Self-management in a control architecture for parallel kinematic robots. In: Proc. of the 27th ASME Computers and Information in Engineering Conference, New York, NY, USA (2008)

    Google Scholar 

  34. Finkemeyer, B., Kröger, T., Wahl, F.M.: Executing assembly tasks specified by manipulation primitive nets. Advanced Robotics 19(5), 591–611 (2005)

    Article  Google Scholar 

  35. Finkemeyer, B.: Robotersteuerungsarchitektur auf der Basis von Aktionsprimitiven (in German). Shaker Verlag, Aachen (2004)

    Google Scholar 

  36. Thomas, U., Wahl, F.M., Maaß, J., Hesselbach, J.: Towards a new concept of robot programming in high speed assembly applications. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 3827–3833 (2005)

    Google Scholar 

  37. Kröger, T.: On-Line Trajectory Generation in Robotic Systems. Ph.D. thesis, Institut für Robotik und Prozessinformatik, Technische Universität Carolo-Wilhelmina zu Braunschweig (2009)

    Google Scholar 

  38. Kröger, T., Finkemeyer, B., Winkelbach, S., Molkenstruck, S., Eble, L.-O., Wahl, F.M.: A manipulator plays Jenga. IEEE Robotics and Automation Magazine 15(3), 79–84 (2008)

    Article  Google Scholar 

  39. Hasbro Inc., 1027 Newport Avenue, Mailstop A906, Pawtucket, RI 02861, USA. Jenga homepage (2008), http://www.jenga.com (accessed: December 15, 2008)

  40. Kröger, T., Finkemeyer, B., Winkelbach, S., Molkenstruck, S., Eble, L.-O., Wahl, F.M.: Demonstration of multi-sensor integration in industrial manipulation (poster). In: Proc. of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, pp. 4282–4284 (2006)

    Google Scholar 

  41. Kröger, T., Finkemeyer, B., Winkelbach, S., Molkenstruck, S., Eble, L.-O., Wahl, F.M.: Demonstration of multi-sensor integration in industrial manipulation (video). In: Proc. of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kröger, T., Finkemeyer, B., Wahl, F.M. (2010). Manipulation Primitives — A Universal Interface between Sensor-Based Motion Control and Robot Programming. In: Schütz, D., Wahl, F.M. (eds) Robotic Systems for Handling and Assembly. Springer Tracts in Advanced Robotics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16785-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16785-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16784-3

  • Online ISBN: 978-3-642-16785-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics