Skip to main content

Heparan Sulfate Proteoglycan in Inflammation and Angiogenesis

  • Chapter
  • First Online:
Glycans in Diseases and Therapeutics

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

Heparan sulfate is a linear polysaccharide composed of glucosamine and uronic acid (glucuronic acid or iduronic acid) disaccharide repeats with various types of sulfation modifications. More than 26 enzymes participate in the biosynthesis of heparan sulfate, which includes two major steps of chain polymerization and chain modification. The chain modification steps proceed sequentially but are incomplete, resulting in enormous structural diversity in mature heparan sulfate. In tissues, heparan sulfate covalently attaches to core proteins to form heparan sulfate proteoglycans, and are abundant at the cell surface and in the extracellular matrix. Studies have demonstrated that heparan sulfate interacts with growth factors, growth factor binding proteins, extracellular proteases, protease inhibitors, chemokines, morphogens, and adhesive proteins to critically regulate cell functions under both physiological and pathological conditions. In this chapter, I will review our current understanding of the cellular and molecular mechanisms, and the structure–function relationship of heparan sulfate in the regulation of inflammation and angiogenesis, with particular focus on the regulatory roles of heparan sulfate on the key inflammatory molecules, selectin and chemokine, and on the vascular endothelial growth factor, the master proangiogenic factor of angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikawa J, Grobe K, Tsujimoto M, Esko JD (2001) Multiple isozymes of heparan sulfate/heparin glcnac n-deacetylase/glcn n-sulfotransferase. Structure and activity of the fourth member, ndst4. J Biol Chem 276(8):5876–5882

    Article  PubMed  CAS  Google Scholar 

  • Allen BL, Filla MS, Rapraeger AC (2001) Role of heparan sulfate as a tissue-specific regulator of fgf-4 and fgf receptor recognition. J Cell Biol 155(5):845–858

    Article  PubMed  CAS  Google Scholar 

  • Bai X, Esko JD (1996) An animal cell mutant defective in heparan sulfate hexuronic acid 2-o-sulfation. J Biol Chem 271(30):17711–17717

    Article  PubMed  CAS  Google Scholar 

  • Beauvais DM, Rapraeger AC (2003) Syndecan-1-mediated cell spreading requires signaling by alphavbeta3 integrins in human breast carcinoma cells. Exp Cell Res 286(2):219–232. doi:S0014482703001265 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Beauvais DM, Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2:3

    Article  PubMed  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777. doi:10.1146/annurev.biochem.68.1.729

    Article  PubMed  CAS  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Borsig L (2007) Antimetastatic activities of modified heparins: selectin inhibition by heparin attenuates metastasis. Semin Thromb Hemost 33(5):540–546. doi:10.1055/s-2007-982086

    Article  PubMed  CAS  Google Scholar 

  • Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A (2001) Heparin and cancer revisited: mechanistic connections involving platelets, p-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 98(6):3352–3357

    Article  PubMed  CAS  Google Scholar 

  • Borsig L, Wong R, Hynes RO, Varki NM, Varki A (2002) Synergistic effects of l- and p-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 99(4):2193–2198

    Article  PubMed  CAS  Google Scholar 

  • Brekken RA, Huang X, King SW, Thorpe PE (1998) Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 58(9):1952–1959

    PubMed  CAS  Google Scholar 

  • Brito AS, Arimateia DS, Souza LR, Lima MA, Santos VO, Medeiros VP, Ferreira PA, Silva RA, Ferreira CV, Justo GZ, Leite EL, Andrade GP, Oliveira FW, Nader HB, Chavante SF (2008) Anti-inflammatory properties of a heparin-like glycosaminoglycan with reduced anti-coagulant activity isolated from a marine shrimp. Bioorg Med Chem 16(21):9588–9595. doi:S0968-0896(08)00857-2 [pii] 10.1016/j.bmc.2008.09.020

    Article  PubMed  CAS  Google Scholar 

  • Buckley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M (2001) Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol 22(4):199–204. doi:S1471-4906(01)01863-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272(5258):60–66

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single vegf allele. Nature 380(6573):435–439

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms vegf164 and vegf188. Nat Med 5(5):495–502

    Article  PubMed  CAS  Google Scholar 

  • Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and vegf in vascular development. Nature 438(7070):937–945

    Article  PubMed  CAS  Google Scholar 

  • Dai E, Liu LY, Wang H, McIvor D, Sun YM, Macaulay C, King E, Munuswamy-Ramanujam G, Bartee MY, Williams J, Davids J, Charo I, McFadden G, Esko JD, Lucas AR (2010) Inhibition of chemokine-glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection. PLoS One 5(5):e10510. doi:10.1371/journal.pone.0010510

    Article  PubMed  Google Scholar 

  • Drake CJ (2003) Embryonic and adult vasculogenesis. Birth Defects Res C Embryo Today 69(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K, Kaldjian EP, Anderson AO, Shaw S (1996) Orchestrated information transfer underlying leukocyte endothelial interactions. Annu Rev Immunol 14:155–177

    Article  PubMed  CAS  Google Scholar 

  • Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107(2):R9–R14. doi:10.1172/JCI10559

    Article  PubMed  CAS  Google Scholar 

  • Elenius V, Gotte M, Reizes O, Elenius K, Bernfield M (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279(40):41928–41935. doi:10.1074/jbc.M404506200 M404506200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108(2):169–173

    PubMed  CAS  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31

    Article  PubMed  CAS  Google Scholar 

  • Forsberg E, Kjellen L (2001) Heparan sulfate: lessons from knockout mice. J Clin Invest 108(2):175–180

    PubMed  CAS  Google Scholar 

  • Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellen L (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400(6746):773–776

    Article  PubMed  CAS  Google Scholar 

  • Frank RD, Holscher T, Schabbauer G, Tencati M, Pawlinski R, Weitz JI, Mackman N (2006) A non-anticoagulant synthetic pentasaccharide reduces inflammation in a murine model of kidney ischemia-reperfusion injury. Thromb Haemost 96(6):802–806. doi:06120802 [pii]

    PubMed  CAS  Google Scholar 

  • Fukai N, Eklund L, Marneros AG, Oh SP, Keene DR, Tamarkin L, Niemela M, Ilves M, Li E, Pihlajaniemi T, Olsen BR (2002) Lack of collagen xviii/endostatin results in eye abnormalities. EMBO J 21(7):1535–1544. doi:10.1093/emboj/21.7.1535

    Article  PubMed  CAS  Google Scholar 

  • Fuster MM, Wang L, Castagnola J, Sikora L, Reddi K, Lee PH, Radek KA, Schuksz M, Bishop JR, Gallo RL, Sriramarao P, Esko JD (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177(3):539–549

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JT (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108(3):357–361. doi:10.1172/JCI13713

    PubMed  CAS  Google Scholar 

  • Gao Y, Wei M, Zheng S, Ba X, Hao S, Zeng X (2006) Chemically modified heparin inhibits the in vitro adhesion of nonsmall cell lung cancer cells to p-selectin. J Cancer Res Clin Oncol 132(4):257–264. doi:10.1007/s00432-005-0061-9

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ramallo E, Marques T, Prats N, Beleta J, Kunkel SL, Godessart N (2002) Resident cell chemokine expression serves as the major mechanism for leukocyte recruitment during local inflammation. J Immunol 169(11):6467–6473

    PubMed  CAS  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) Vegf guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Giuffre L, Cordey AS, Monai N, Tardy Y, Schapira M, Spertini O (1997) Monocyte adhesion to activated aortic endothelium: Role of l-selectin and heparan sulfate proteoglycans. J Cell Biol 136(4):945–956

    Article  PubMed  CAS  Google Scholar 

  • Gotte M (2003) Syndecans in inflammation. FASEB J 17(6):575–591

    Article  PubMed  CAS  Google Scholar 

  • Gotte M, Joussen AM, Klein C, Andre P, Wagner DD, Hinkes MT, Kirchhof B, Adamis AP, Bernfield M (2002) Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Invest Ophthalmol Vis Sci 43(4):1135–1141

    PubMed  Google Scholar 

  • Grobe K, Ledin J, Ringvall M, Holmborn K, Forsberg E, Esko JD, Kjellen L (2002) Heparan sulfate and development: differential roles of the n-acetylglucosamine n-deacetylase/n-sulfotransferase isozymes. Biochim Biophys Acta 1573(3):209–215

    PubMed  CAS  Google Scholar 

  • Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6(7):530–541

    Article  PubMed  Google Scholar 

  • Hemmerich S, Bistrup A, Singer MS, van Zante A, Lee JK, Tsay D, Peters M, Carminati JL, Brennan TJ, Carver-Moore K, Leviten M, Fuentes ME, Ruddle NH, Rosen SD (2001) Sulfation of l-selectin ligands by an hev-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15(2):237–247

    Article  PubMed  CAS  Google Scholar 

  • Hoogewerf AJ, Kuschert GS, Proudfoot AE, Borlat F, Clark-Lewis I, Power CA, Wells TN (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36(44):13570–13578

    Article  PubMed  CAS  Google Scholar 

  • Hostettler N, Naggi A, Torri G, Ishai-Michaeli R, Casu B, Vlodavsky I, Borsig L (2007) P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. FASEB J 21(13):3562–3572. doi:fj.07-8450com [pii] 10.1096/fj.07-8450com

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108(3):349–355

    PubMed  CAS  Google Scholar 

  • Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Nakamura E, Ito M, Nagasaka T, Kobayashi H, Kusugami K, Saito H, Muramatsu T (2000a) Syndecan-4 deficiency impairs the fetal vessels in the placental labyrinth. Dev Dyn 219(4):539–544. doi:10.1002/1097-0177(2000) 9999:9999<::AID-DVDY1081>3.0.CO;2-K [pii] 10.1002/1097-0177(2000) 9999:9999<::AID-DVDY1081>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Tsuzuki S, Nakamura E, Kusugami K, Saito H, Muramatsu T (2000b) Syndecan-4 deficiency impairs focal adhesion formation only under restricted conditions. J Biol Chem 275(8):5249–5252

    Article  PubMed  CAS  Google Scholar 

  • Ishihara M, Kiefer MC, Barr PJ, Guo Y, Swiedler SJ (1992) Selection of cos cell mutants defective in the biosynthesis of heparan sulfate proteoglycan. Anal Biochem 206(2):400–407. doi:0003-2697(92)90385-K [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ishihara M, Guo Y, Wei Z, Yang Z, Swiedler SJ, Orellana A, Hirschberg CB (1993) Regulation of biosynthesis of the basic fibroblast growth factor binding domains of heparan sulfate by heparan sulfate-n-deacetylase/n-sulfotransferase expression. J Biol Chem 268(27):20091–20095

    PubMed  CAS  Google Scholar 

  • Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellen L, Claesson-Welsh L (2006) Heparan sulfate in trans potentiates vegfr-mediated angiogenesis. Dev Cell 10(5):625–634

    Article  PubMed  CAS  Google Scholar 

  • Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24(25):4037–4051. doi:1208602 [pii] 10.1038/sj.onc.1208602

    PubMed  CAS  Google Scholar 

  • Kharabi Masouleh B, Ten Dam GB, Wild MK, Seelige R, van der Vlag J, Rops AL, Echtermeyer FG, Vestweber D, van Kuppevelt TH, Kiesel L, Gotte M (2009) Role of the heparan sulfate proteoglycan syndecan-1 (cd138) in delayed-type hypersensitivity. J Immunol 182(8):4985–4993. doi:182/8/4985 [pii] 10.4049/jimmunol.0800574

    Article  PubMed  Google Scholar 

  • Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230(2):230–242

    Article  PubMed  CAS  Google Scholar 

  • Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A (1998) Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest 101(4):877–889

    Article  PubMed  CAS  Google Scholar 

  • Kragh M, Loechel F (2005) Non-anti-coagulant heparins: a promising approach for prevention of tumor metastasis (review). Int J Oncol 27(4):1159–1167

    PubMed  CAS  Google Scholar 

  • Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L, Spillmann D (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279(41):42732–42741

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Park K, Kim SK, Park RW, Kwon IC, Kim SY, Byun Y (2008) Antimetastatic effect of an orally active heparin derivative on experimentally induced metastasis. Clin Cancer Res 14(9):2841–2849. doi:14/9/2841 [pii] 10.1158/1078-0432.CCR-07-0641

    Article  PubMed  CAS  Google Scholar 

  • Leppanen A, White SP, Helin J, McEver RP, Cummings RD (2000) Binding of glycosulfopeptides to p-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J Biol Chem 275(50):39569–39578. doi:10.1074/jbc.M005005200 M005005200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111(5):635–646

    Article  PubMed  CAS  Google Scholar 

  • Ludwig RJ, Alban S, Bistrian R, Boehncke WH, Kaufmann R, Henschler R, Gille J (2006a) The ability of different forms of heparins to suppress p-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thromb Haemost 95(3):535–540. doi:06030535 [pii] 10.1267/THRO06030535

    PubMed  CAS  Google Scholar 

  • Ludwig RJ, Alban S, Boehncke WH (2006b) Structural requirements of heparin and related molecules to exert a multitude of anti-inflammatory activities. Mini Rev Med Chem 6(9):1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Luster AD, Greenberg SM, Leder P (1995) The ip-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 182(1):219–231

    Article  PubMed  CAS  Google Scholar 

  • Massena S, Christoffersson G, Hjertstrom E, Zcharia E, Vlodavsky I, Ausmees N, Rolny C, Li JP, Phillipson M (2010) A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 116:1924–1931. doi:blood-2010-01-266072 [pii] 10.1182/blood-2010-01-266072

    Article  PubMed  CAS  Google Scholar 

  • McQuade KJ, Beauvais DM, Burbach BJ, Rapraeger AC (2006) Syndecan-1 regulates alphavbeta5 integrin activity in b82l fibroblasts. J Cell Sci 119(Pt 12):2445–2456

    Article  PubMed  CAS  Google Scholar 

  • Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A (1997) Transcytosis and surface presentation of il-8 by venular endothelial cells. Cell 91(3):385–395

    Article  PubMed  CAS  Google Scholar 

  • Mocco J, Shelton CE, Sergot P, Ducruet AF, Komotar RJ, Otten ML, Sosunov SA, Macarthur RB, Kennedy TP, Connolly ES Jr (2007) O-desulfated heparin improves outcome after rat cerebral ischemia/reperfusion injury. Neurosurgery 61(6):1297–1303; discussion 1303–1294. doi:10.1227/01.neu.0000306109.55174.e6 00006123-200712000-00021 [pii]

    Google Scholar 

  • Nelson RM, Cecconi O, Roberts WG, Aruffo A, Linhardt RJ, Bevilacqua MP (1993) Heparin oligosaccharides bind l- and p-selectin and inhibit acute inflammation. Blood 82(11):3253–3258

    PubMed  CAS  Google Scholar 

  • Norgard-Sumnicht K, Varki A (1995) Endothelial heparan sulfate proteoglycans that bind to l-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem 270(20):12012–12024

    Article  PubMed  CAS  Google Scholar 

  • Norgard-Sumnicht KE, Varki NM, Varki A (1993) Calcium-dependent heparin-like ligands for l-selectin in nonlymphoid endothelial cells. Science 261(5120):480–483

    Article  PubMed  CAS  Google Scholar 

  • Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6(9):633–643. doi:nri1918 [pii] 10.1038/nri1918

    Article  PubMed  CAS  Google Scholar 

  • Park PW, Pier GB, Preston MJ, Goldberger O, Fitzgerald ML, Bernfield M (2000a) Syndecan-1 shedding is enhanced by lasa, a secreted virulence factor of pseudomonas aeruginosa. J Biol Chem 275(5):3057–3064

    Article  PubMed  CAS  Google Scholar 

  • Park PW, Reizes O, Bernfield M (2000b) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 275(39):29923–29926. doi:10.1074/jbc.R000008200 R000008200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Remick DG, Green LB, Newcomb DE, Garg SJ, Bolgos GL, Call DR (2001) Cxc chemokine redundancy ensures local neutrophil recruitment during acute inflammation. Am J Pathol 159(3):1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L, Forsberg E (2000) Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking n-deacetylase/n-sulfotransferase-1. J Biol Chem 275(34):25926–25930

    Article  PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  PubMed  CAS  Google Scholar 

  • Rollins BJ (1997) Chemokines. Blood 90(3):909–928

    PubMed  CAS  Google Scholar 

  • Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  PubMed  CAS  Google Scholar 

  • Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2(7):521–528

    Article  PubMed  CAS  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314

    Article  PubMed  CAS  Google Scholar 

  • Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via paneth cells. Proc Natl Acad Sci USA 99(24):15451–15455

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JL, Varki A, Borsig L (2007) Heparin attenuates metastasis mainly due to inhibition of p- and l-selectin, but non-anticoagulant heparins can have additional effects. Thromb Res 120(Suppl 2):S107–S111. doi:S0049-3848(07)70138-X [pii] 10.1016/S0049-3848(07)70138-X

    Article  PubMed  Google Scholar 

  • Tanaka Y, Kimata K, Wake A, Mine S, Morimoto I, Yamakawa N, Habuchi H, Ashikari S, Yamamoto H, Sakurai K, Yoshida K, Suzuki S, Eto S (1996) Heparan sulfate proteoglycan on leukemic cells is primarily involved in integrin triggering and its mediated adhesion to endothelial cells. J Exp Med 184(5):1987–1997

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell DJ, Horne AP, Holme KR, Preuss JM, Page CP (1999) Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 46:151–208

    Article  PubMed  CAS  Google Scholar 

  • Varki A (1994) Selectin ligands. Proc Natl Acad Sci USA 91(16):7390–7397

    Article  PubMed  CAS  Google Scholar 

  • Varki NM, Varki A (2002) Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Semin Thromb Hemost 28(1):53–66

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Brown JR, Varki A, Esko JD (2002) Heparin’s anti-inflammatory effects require glucosamine 6-o-sulfation and are mediated by blockade of l- and p-selectins. J Clin Invest 110(1):127–136

    PubMed  CAS  Google Scholar 

  • Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs l-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6(9):902–910

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Tai G, Gao Y, Li N, Huang B, Zhou Y, Hao S, Zeng X (2004) Modified heparin inhibits p-selectin-mediated cell adhesion of human colon carcinoma cells to immobilized platelets under dynamic flow conditions. J Biol Chem 279(28):29202–29210. doi:10.1074/jbc.M312951200 M312951200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Gao Y, Tian M, Li N, Hao S, Zeng X (2005) Selectively desulfated heparin inhibits p-selectin-mediated adhesion of human melanoma cells. Cancer Lett 229(1):123–126. doi:S0304-3835(05)00111-4 [pii] 10.1016/j.canlet.2005.01.034

    Article  PubMed  CAS  Google Scholar 

  • Witt DP, Lander AD (1994) Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 4(5):394–400

    Article  PubMed  CAS  Google Scholar 

  • Young E (2008) The anti-inflammatory effects of heparin and related compounds. Thromb Res 122(6):743–752. doi:S0049-3848(07)00283-6 [pii] 10.1016/j.thromres.2006.10.026

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Geng JG, Xu Q (2003) N-desulfated heparin improves concanavalin a-induced liver injury partly through inhibiting t lymphocyte adhesion. Inflamm Res 52(9):383–389. doi:10.1007/s00011-003-1190-8

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Chen JL, Song W, Wang F, Zhang MJ, Ni PH, Geng JG (2002) Effect of n-desulfated heparin on hepatic/renal ischemia reperfusion injury in rats. World J Gastroenterol 8(5):897–900

    PubMed  CAS  Google Scholar 

  • Zhou Z, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu B, Cao Y, Tryggvason K (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res 64(14):4699–4702. doi:10.1158/0008-5472.CAN-04-0810 64/14/4699 [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Ms. Karen Howard for her careful reading and English version of this manuscript. Our research is supported by the Georgia Cancer Coalition, the American Heart Association, and the NIH (R01HL093339 and P41RR005351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, L. (2011). Heparan Sulfate Proteoglycan in Inflammation and Angiogenesis. In: PavĂŁo, M. (eds) Glycans in Diseases and Therapeutics. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16833-8_1

Download citation

Publish with us

Policies and ethics