Skip to main content

Towards Calculating the Basin of Attraction of Non-Smooth Dynamical Systems Using Radial Basis Functions

  • Conference paper
  • First Online:
Approximation Algorithms for Complex Systems

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 3))

  • 867 Accesses

Summary

We consider a special type of non-smooth dynamical systems, namely x? = f(t, x), where x ? R, f is t-periodic with period T and non-smooth at x = 0. In [6] a sufficient Borg-like condition to determine a subset of its basin of attraction was given. The condition involves a function W and its partial derivatives; the function W is t-periodic and non-smooth at x = 0.

In this article, we describe a method to approximate this function W using radial basis functions. The challenges that W is non-smooth at x = 0 and a time-periodic function are overcome by introducing an artificial gap in x-direction and using a time-periodic kernel. The method is applied to an example which models a motor with dry friction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Borg: A condition for the existence of orbitally stable solutions of dynamical systems. Kungl. Tekn. H¨ogsk. Handl. 153, 1960.

    Google Scholar 

  2. C. Chicone: Ordinary Differential Equations with Applications. Springer, 1999.

    Google Scholar 

  3. G.E. Fasshauer: Solving partial differential equations by collocation with radial basis functions. In Surface Fitting and Multiresolution Methods, A.L.M´ehaut´e, C. Rabut, and L. L. Schumaker (eds.), Vanderbilt University Press, 1997, 131–138.

    Google Scholar 

  4. A. Filippov: Differential Equations with Discontinuous Righthand Sides. Kluwer, 1988.

    Google Scholar 

  5. C. Franke and R. Schaback: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 1998, 381–399.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Giesl: The basin of attraction of periodic orbits in nonsmooth differential equations. ZAMM Z. Angew. Math. Mech. 85, 2005, 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Giesl: Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete Contin. Dyn. Syst. 18, 2007, 355–373.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Giesl: Construction of Global Lyapunov Functions using Radial Basis Functions. Lecture Notes in Mathematics 1904, Springer-Verlag, Heidelberg, 2007.

    Google Scholar 

  9. P. Giesl: On the determination of the basin of attraction of discrete dynamical systems. J. Difference Equ. Appl. 13, 2007, 523–546.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Giesl and H.Wendland: Meshless collocation: error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45, 2007, 1723–1741.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Giesl and H. Wendland: Approximating the basin of attraction of timeperiodic ODEs by meshless collocation. Discrete Contin. Dyn. Syst. 25, 2009, 1249–1274.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Giesl and H. Wendland: Approximating the basin of attraction of timeperiodic ODEs by meshless collocation of a Cauchy problem. Discrete Contin. Dyn. Syst. Supplement, 2009, 259–268.

    Google Scholar 

  13. Ph. Hartman: Ordinary Differential Equations. Wiley, New York, 1964.

    Google Scholar 

  14. B. Michaeli: Lyapunov-Exponenten bei nichtglatten dynamischen Systemen. PhD Thesis, University of K¨oln, 1999 (in German).

    Google Scholar 

  15. F.J. Narcowich and J.D. Ward: Generalized Hermite interpolation via matrixvalued conditionally positive definite functions. Math. Comput. 63, 1994, 661–687.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Wendland: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 1995, 389–396.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Wendland: Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93, 1998, 258–272.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Wendland: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2005.

    Google Scholar 

  19. Z. Wu: Hermite-Birkhoff interpolation of scattered data by radial basis functions, Approximation Theory Appl. 8, 1992, 1–10.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesl, P. (2011). Towards Calculating the Basin of Attraction of Non-Smooth Dynamical Systems Using Radial Basis Functions. In: Georgoulis, E., Iske, A., Levesley, J. (eds) Approximation Algorithms for Complex Systems. Springer Proceedings in Mathematics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16876-5_9

Download citation

Publish with us

Policies and ethics