Skip to main content

Consensus of Classification Systems, with Adams’ Results Revisited

  • Conference paper
Classification, Clustering, and Data Mining Applications

Abstract

The problem of aggregating a profile of closure systems into a consensus closure system has interesting applications in classification. We first present an overview of the results obtained by a lattice approach. Then, we develop a more refined approach based on overhangings and implications that appears to be a generalization of Adams’ consensus tree algorithm. Adams’ uniqueness result is explained and generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams III, E.N. (1972). “Consensus Techniques and the Comparison of Taxonomic Trees,” Systematic Zoology, 21, 390–397.

    Article  Google Scholar 

  2. Adams III, E.N. (1986). “N-Trees as Nestings: Complexity, Similarity and Consensus,” Journal of Classification, 3, 299–317.

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong, W.W. (1974). “Dependency Structures of Data Base Relationships,” Information Processing, 74, 580–583.

    MathSciNet  Google Scholar 

  4. Arrow, K.J. (1951). Social Choice and Individual Values. Wiley, New York.

    MATH  Google Scholar 

  5. Barbut, M., and Monjardet, B. (1970). Ordre et Classification, Algèbre et Combinatoire. Hachette, Paris.

    MATH  Google Scholar 

  6. Barthélémy, J.-P., and Janowitz, M.F. (1991). “A Formal Theory of Consensus,” SIAM Journal of Discrete Mathematics, 4, 305–322.

    Article  MATH  Google Scholar 

  7. Barthélémy, J.-P., and Leclerc, B. (1995). “The Median Procedure for Partitions,” in Partitioning Data Sets, eds. I.J. Cox, P. Hansen, and B. Julesz, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 19. Providence, RI: American Mathematical Society, pp. 3–34.

    Google Scholar 

  8. Barthélémy, J.-P., Leclerc, B., and Monjardet, B. (1986). “On the Use of Ordered Sets in Problems of Comparison and Consensus of Classifications,” Journal of Classification, 3, 187–224.

    Article  MathSciNet  MATH  Google Scholar 

  9. Barthélémy, J.-P., and Monjardet, B. (1981). “The Median Procedure in Cluster Analysis and Social Choice Theory,” Mathematical Social Sciences, 1, 235–238.

    Article  MATH  Google Scholar 

  10. Bertrand, P. (2002). “Set Systems for Which Each Set Properly Intersects at Most One Other Set-Application to Pyramidal Clustering,” in Classification, Clustering, and Data Analysis, eds. K. Jajuga and A. Sokolowski, Berlin: Springer, pp. 38–39.

    Google Scholar 

  11. Bryant, D. (2003). “A Classification of Consensus Methods for Phylogenetics,” in Bioconsensus, eds. M. Janowitz, F.-J. Lapointe, F. McMorris, B. Mirkin, and F. Roberts, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 61, Providence, R.I.: American Mathematical Society, pp. 163–184.

    Google Scholar 

  12. Caspard, N., and Monjardet, B. (2003). “The Lattices of Moore Families and Closure Operators on a Finite Set: A Survey,” Discrete Applied Mathematics, 127, 241–269.

    Article  MathSciNet  MATH  Google Scholar 

  13. Domenach, F., and Leclerc, B. (2002). “On the Roles of Galois Connections in Classification,” in Explanatory Data Analysis in Empirical Research, eds. M. Schwaiger and O. Opitz, Berlin: Springer, pp. 31–40.

    Google Scholar 

  14. Domenach, F., and Leclerc, B. (2003). “Closure Systems, Implicational Systems, Overhanging Relations and the case of Hierarchical Classification,” Mathematical Social Sciences, to appear.

    Google Scholar 

  15. Day, W.H.E., and McMorris, F.R. (2003). Axiomatic Consensus Theory in Group Choice and Biomathematics, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  16. Ganter, B., and Wille, R. (1999). Formal Concept Analysis. Springer, Berlin.

    Book  MATH  Google Scholar 

  17. Leclerc, B. (1984). “Efficient and Binary Consensus Functions on Transitively Valued Relations,” Mathematical Social Sciences, 8, 45–61.

    Article  MathSciNet  MATH  Google Scholar 

  18. Leclerc, B. (1994). “Medians for Weight Metrics in the Covering Graphs of Semilattices, ” Discrete Applied Mathematics, 49, 281–297.

    Article  MathSciNet  MATH  Google Scholar 

  19. Leclerc, B. (1998). “Consensus of Classifications: The Case of Trees,” in Advances in Data Science and Classification, Studies in Classification, Data Analysis and Knowledge Organization, eds. A. Rizzi, M. Vichi, and H.-H. Bock, Berlin: Springer-Verlag, pp. 81–90.

    Google Scholar 

  20. Leclerc, B. (2003). “The Median Procedure in the Semilattice of Orders,” Discrete Applied Mathematics, 127, 285–302.

    Article  MathSciNet  MATH  Google Scholar 

  21. Margush, T., and McMorris, F.R. (1981). “Consensus n-Trees,” Bulletin of Mathematical Biology, 43, 239–244.

    MathSciNet  MATH  Google Scholar 

  22. Mirkin, B. (1974). “The Problems of Approxmation in Spaces of Relations and Qualitative Data Analysis,” Automatika y Telemecanika, English translation Information and Remote Control, 35, 1424–1431.

    Google Scholar 

  23. Mirkin, B. (1975). “On the Problem of Reconciling Partitions,” in Quantitative Sociology, International Perspectives on Mathematical and Statistical Modelling, New York: Academic Press, pp. 441–449.

    Google Scholar 

  24. Monjardet, B. (1990). “Arrowian Characterization of Latticial Federation Consensus Functions,” Mathematical Social Sciences, 20, 51–71.

    Article  MathSciNet  MATH  Google Scholar 

  25. Monjardet, B. (1990). “Comments on R.P. Dilworth’s’ Lattices with Unique Irreducible Decompositions’,” in The Dilworth Theorems: Selected Works of Robert P. Dilworth, eds. K. Bogart, R. Freese, and J. Kung, Boston, MA: Birkhauser, pp. 192–201.

    Google Scholar 

  26. Raderanirina, V. (2001). Treillis et Agrégation de Familles de Moore et de Fonctions de Choix, Ph.D. Thesis, University Paris 1 Panthéon-Sorbonne, Paris.

    Google Scholar 

  27. Régnier, S. (1965). “Sur Quelques Aspects Mathématiques des Problèmes de Classification Automatique,” ICC Bulletin, 4, 175–191.

    Google Scholar 

  28. Semple, C, and Steel, M.A. (2000). “A Supertree Method for Rooted Trees,” Discrete Applied Mathematics, 105, 147–158.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domenach, F., Leclerc, B. (2004). Consensus of Classification Systems, with Adams’ Results Revisited. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds) Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17103-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17103-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22014-5

  • Online ISBN: 978-3-642-17103-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics