Skip to main content

CT Image Segmentation Using Structural Analysis

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6455))

Included in the following conference series:

Abstract

We propose a segmentation method for blurred and low-resolution CT images focusing physical properties. The basic idea of our research is simple: two objects can be easily separated in areas of structural weakness. Given CT images of an object, we assign a physical property such as Young’s modulus to each voxel and create functional images (e.g., von Mises strain at the voxel). We then remove the voxel with the largest value in the functional image, and these steps are reiterated until the input model is decomposed into multiple parts. This simple and unique approach provides various advantages over conventional segmentation methods, including preciousness and noise robustness. This paper also demonstrates the efficiency of our approach using the results of various types of CT images, including biological representations and those of engineering objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baiker, M., Milles, J., Vossepoel, A., Que, I., Kaijzel, E., Lowik, C., Reiber, J., Dijkstra, J., Lelieveldt, B.: Fully automated whole-body registration in mice using an articulated skeleton atlas. In: 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. ISBI 2007, pp. 728–731 (2007)

    Google Scholar 

  2. Prévost, J.: Mechanics of a Continuous porous media. International Journal of Engineering Science 18, 787–800 (1980)

    Article  MATH  Google Scholar 

  3. Zienkiewicz, O., Morice, P.: The finite element method in engineering science. McGraw-Hill, London (1971)

    Google Scholar 

  4. Quint (Voxelcon), http://www.quint.co.jp/jp/pro/vox/index.htm

  5. Hamasaki, T., Yoshida, T.: Image Segmentation based on Finite Element Analysis in Japanese). IEIC Technical Report (Institute of Electronics, Information and Communication Engineers) 100, 1–8 (2000)

    Google Scholar 

  6. Pham, Q.C., Vincent, F.C.P.C.P., Magnin, I.: A FEM-based deformable model for the 3D segmentation and trackingof the heart in cardiac MRI. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. ISPA 2001, pp. 250–254 (2001)

    Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  8. Pardo, X., Carreira, M., Mosquera, A., Cabello, D.: A snake for CT image segmentation integrating region and edge information. Image and Vision Computing 19, 461–475 (2001)

    Article  Google Scholar 

  9. Sebastian, T., Tek, H., Crisco, J., Kimia, B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Medical Image Analysis 7, 21–45 (2003)

    Article  Google Scholar 

  10. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based onimmersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 583–598 (1991)

    Article  Google Scholar 

  11. Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.: Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging 23, 447 (2004)

    Article  Google Scholar 

  12. Hahn, H., Wenzel, M., Konrad-Verse, O., Peitgen, H.: A minimally-interactive watershed algorithm designed for efficient CTA bone removal. Computer Vision Approaches to Medical Image Analysis, 178–189 (2006)

    Google Scholar 

  13. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. International Journal of Computer Vision 70, 109–131 (2006)

    Article  Google Scholar 

  14. Liu, L., Raber, D., Nopachai, D., Commean, P., Sinacore, D., Prior, F., Pless, R., Ju, T.: Interactive separation of segmented bones in ct volumes using graph cut. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 296–304. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Shammaa, M., Suzuki, H., Ohtake, Y.: Extraction of isosurfaces from multi-material CT volumetric data of mechanical parts. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 213–220. ACM, New York (2008)

    Chapter  Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  17. Vasilache, S., Najarian, K.: Automated bone segmentation from Pelvic CT images. In: IEEE International Conference on Bioinformatics and Biomeidcine Workshops. BIBMW 2008, pp. 41–47 (2008)

    Google Scholar 

  18. Adams, R., Bischof, L.: Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 641–647 (1994)

    Google Scholar 

  19. Casiraghi, E., Campadelli, P., Pratissoli, S.: Fully Automatic Segmentation of Abdominal Organs from CT Images using Fast Marching Methods (2008)

    Google Scholar 

  20. Sethian, J., et al.: Level set methods and fast marching methods, vol. 11 (2003)

    Google Scholar 

  21. Wang, L., Greenspan, M., Ellis, R.: Validation of bone segmentation and improved 3-D registration using contour coherency in CT data. IEEE Transactions on Medical Imaging 25 (2006)

    Google Scholar 

  22. Kikuchi, N., et al.: Adaptive finite element methods for shape optimization of linearly elastic structures. Computer Methods in Applied Mechanics and Engneering 57, 67–89 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Noboru, B., Philip, M.: Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Baldonado, M., Chang, C., Gravano, L., Paepcke, A.: The Stanford digital library metadata architecture. International Journal on Digital Libraries 1, 108–121 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hishida, H., Michikawa, T., Ohtake, Y., Suzuki, H., Oota, S. (2010). CT Image Segmentation Using Structural Analysis. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17277-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17276-2

  • Online ISBN: 978-3-642-17277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics