Skip to main content

Functional Realization: The Generic Mechatronic Transducer

  • Chapter
  • First Online:
Mechatronic Systems Design

Abstract

The functional interface between information processing—in the form of electrical signals—and mechanical structure—in the form of forces/torques and motion variables—is of key importance in a mechatronic product. The bi-directional conversion of energy from electrical to mechanical is a key component of the primary product task “perform purposeful motions”. The multiple, diverse conversion principles available today can also be integrated into a mechatronic product in a functionally and physically compact manner in the form of mechatronic transducers. Along with a basic grasp of these conversion principles, understanding the influences which parameters describing the transducer have on its transfer characteristics is of particular interest in systems design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anderson, E. H., N. W. Hagood and J. M. Goodliffe (1992). Self-sensing piezoelectric actuation -- Analysis and application to controlled structures Proceedings of the 33rd AIAA/ASME/ASC/AHS Structures, Structural Dynamics and Materials Conference Dallas, TX. pp.2141–2155.

    Google Scholar 

  • Apostolyuk, V. (2006). Theory and Design of Micromechanical Vibratory Gyroscopes. MEMS/NEMS Handbook, Techniques and Applications. C. T. Leondes. Springer. 1: 173–195.

    Google Scholar 

  • Bronshtein, I. N., K. A. Semendyayev, G. Musiol and H. Mühlig (2005). Handbook of Mathematics. Springer.

    Google Scholar 

  • Brusa, E., S. Carabelli, F. Carraro and A. Tonoli (1998). “Electromechanical Tuning of Self-Sensing Piezoelectric Transducers.” Journal of Intelligent Material Systems and Structures 9(3): 198–209.

    Article  Google Scholar 

  • Chan, K. and W. Liao (2009). “Self-sensing actuators with passive damping for adaptive vibration control of hard disk drives.” Microsystem Technologies 15(3): 355–366.

    Article  Google Scholar 

  • DIN (1988). Guide to dynamic measurements of piezoelectric ceramics with high electromechanical coupling; identical with IEC 60483, edition 1976. DIN IEC 60483: 1988–04. DIN.

    Google Scholar 

  • Dosch, J. J., D. J. Inman and E. Garcia (1992). “A Self-Sensing Piezoelectric Actuator for Collocated Control.” Journal of Intelligent Material Systems and Structures 3(1): 166–185.

    Article  Google Scholar 

  • Fleming, A. J., S. Behrens and S. O. R. Moheimani (2002). “Optimization and implementation of multimode piezoelectric shunt damping systems.” Mechatronics, IEEE/ASME Transactions on 7(1): 87–94.

    Article  Google Scholar 

  • Franklin, G. F., J. D. Powell and M. L. Workman (1998). Digital Control of Dynamic Systems. Addison-Wesley.

    Google Scholar 

  • Funato, H., A. Kawamura and K. Kamiyama (1997). “Realization of negative inductance using variable active-passive reactance (VAPAR).” Power Electronics, IEEE Transactions on 12(4): 589–596.

    Article  Google Scholar 

  • Goldstein, H., C. P. Poole and J. L. Safko (2001). Classical Mechanics. Addison Wesley.

    Google Scholar 

  • Hagood, N. W. and A. v. Flotow (1991). “Damping of structural vibrations with piezoelectric materials and passive electrical networks.” Journal of Sound and Vibration 146(2): 243–268.

    Article  Google Scholar 

  • Hartog, J. P. D. (1947). Mechanical Vibrations. McGraw-Hill.

    Google Scholar 

  • Hollkamp, J. J. (1994). “Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts.” Journal of Intelligent Material Systems and Structures 5(1): 49–57.

    Article  Google Scholar 

  • Horowitz, I. M. (1963). Synthesis of Feedback Systems. New York. Academic Press.

    MATH  Google Scholar 

  • IEEE (1988). “IEEE standard on piezoelectricity.” ANSI/IEEE Std 176–1987.

    Google Scholar 

  • Karnopp, D. C., D. L. Margolis and R. C. Rosenberg (2006). System dynamics: modeling and simulation of mechatronic systems. John Wiley & Sons, Inc.

    Google Scholar 

  • Lehr, E. (1930). “Untersuchung der erzwungenen Koppelschwingungen eines elektromechanischen Systems unter Verwendung eines graphischen Verfahrens.” Archiv für Elektrotechnik XXIV.: 330–348.

    Article  Google Scholar 

  • Lorenz, R. D. (1999). Advances in electric drive control. Electric Machines and Drives, 1999. International Conference IEMD ’99. pp.9–16.

    Google Scholar 

  • Marneffe, B. d. and A. Preumont (2008). “Vibration damping with negative capacitance shunts: theory and experiment.” Smart Materials and Structures 17(035015): 9.

    Google Scholar 

  • Mateu, L. and F. Moll (2007). System-Level Simulation of a Self-Powered Sensor with Piezoelectric Energy Harvesting. Sensor Technologies and Applications, 2007. SensorComm 2007. International Conference on. pp. 399- 404.

    Google Scholar 

  • Mohammed, A. (1966). “Expressions for the Electromechanical Coupling Factor in Terms of Critical Frequencies.” The Journal of the Acoustical Society of America 39(2): 289–293.

    Article  MathSciNet  Google Scholar 

  • Moheimani, S. O. R. (2003). “A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers.” Control Systems Technology, IEEE Transactions on 11(4): 482–494.

    Article  Google Scholar 

  • Moheimani, S. O. R. and S. Behrens (2004). “Multimode piezoelectric shunt damping with a highly resonant impedance.” Control Systems Technology, IEEE Transactions on 12(3): 484–491.

    Article  Google Scholar 

  • Neubauer, M., R. Oleskiewicz and K. Popp (2005). “Comparison of Damping Performance of Tuned Mass Dampers and Shunted Piezo Elements.” PAMM 5(1): 117–118.

    Article  Google Scholar 

  • Ogata, K. (2010). Modern Control Engineering. Prentice Hall.

    Google Scholar 

  • Oleskiewicz, R., M. Neubauer, T. Krzyzynski and K. Popp (2005). “Synthetic Impedance Circuits in Semi-Passive Vibration Control with Piezo- Ceramics -- Efficiency and Limitations.” PAMM 5(1): 121–122.

    Article  Google Scholar 

  • Paulitsch, C., P. Gardonio and S. J. Elliott (2006). “Active vibration damping using self-sensing, electrodynamic actuators.” Smart Materials and Structures 15: 499–508.

    Article  Google Scholar 

  • Preumont, A. (2002). Vibration Control of Active Structures -- An Introduction. Kluwer Academic Publishers.

    Google Scholar 

  • Preumont, A. (2006). Mechatronics, Dynamics of Electromechanical and Piezoelectric Systems. Springer.

    Google Scholar 

  • Priya, S. (2007). “Advances in energy harvesting using low profile piezoelectric transducers.” Journal of Electroceramics 19(1): 167–184.

    Article  MathSciNet  Google Scholar 

  • Reinschke, K. and P. Schwarz (1976). Verfahren zur rechnergestützten Analyse linearer Netzwerke. Akademie Verlag Berlin.

    MATH  Google Scholar 

  • Schenk, H., P. Durr, T. Haase, D. Kunze, et al. (2000). “Large deflection micromechanical scanning mirrors for linear scans and pattern generation.” Selected Topics in Quantum Electronics, IEEE Journal of 6(5): 715–722.

    Article  Google Scholar 

  • Schuster, T., T. Sandner and H. Lakner (2006). Investigations on an Integrated Optical Position Detection of Micromachined Scanning Mirrors. Photonics and Microsystems, 2006 International Students and Young Scientists Workshop. pp.55–58.

    Google Scholar 

  • Senturia, S. D. (2001). Microsystem Design. Kluwer Academic Publishers.

    Google Scholar 

  • Shu, Y. C. and I. C. Lien (2006). “Analysis of power output for piezoelectric energy harvesting systems.” Smart Materials and Structures 15: 1499–1512.

    Article  Google Scholar 

  • Thomas, R. E., A. J. Rosa and G. J. Toussaint (2009). The Analysis and Design of Linear Circuits. John Wiley and Sons, Inc.

    Google Scholar 

  • Tilmans, H. A. C. (1996). “Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems.” Journal of Micromechanics and Microengineering (6): 157–176.

    Google Scholar 

  • Twiefel, J., B. Richter, T. Sattel and J. Wallaschek (2008). “Power output estimation and experimental validation for piezoelectric energy harvesting systems.” Journal of Electroceramics 20(3): 203–208.

    Article  Google Scholar 

  • VDI (2006). Schwingungsdämpfer und Schwingungstilger -- Schwingungstilger und Schwingungstilgung (in German) -- Dynamic damper and dynamic vibration absorber -- Dynamic vibration absorber and dynamic vibration absorption (in English). V. D. I. VDI. 3833 Blatt 2::2006–12.

    Google Scholar 

  • Vischer, D. and H. Bleuler (1993). “Self-sensing active magnetic levitation.” Magnetics, IEEE Transactions on 29(2): 1276–1281.

    Article  Google Scholar 

  • Ward, J. K. and S. Behrens (2008). “Adaptive learning algorithms for vibration energy harvesting.” Smart Materials and Structures 17: 035025 (035029 pp).

    Google Scholar 

  • Wellstead, P. E. (1979). Introduction to Physical System Modelling. London. Academic Press Ltd.

    Google Scholar 

  • Yaralioglu, G. G., A. S. Ergun, B. Bayram, E. Haeggstrom, et al. (2003). “Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 50(4): 449–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Janschek .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 SpringerVerlag Berlin Heidelberg

About this chapter

Cite this chapter

Janschek, K., Richmond, K. (2012). Functional Realization: The Generic Mechatronic Transducer. In: Mechatronic Systems Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17531-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17531-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17530-5

  • Online ISBN: 978-3-642-17531-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics