Skip to main content

Neurologie

  • Chapter
PET/CT-Atlas
  • 3234 Accesses

Zusammenfassung

Wie die Computertomographie (CT) [1] wurde die Positronenemissionstomographie (PET) beim Menschen zuerst für Untersuchungen des Gehirns eingesetzt [2]. Dieses Organ ist für Schnittbilduntersuchungen besonders geeignet, da es im Vergleich zu anderen Körperregionen relativ klein und ziemlich homogen ist und keine Eigenbewegungen durchführt. Dazu kommt, dass die Schädelkapsel eine direkte Untersuchung (Inspektion, Palpation, Auskultation) verwehrt, sodass Aufschlüsse über die normale Struktur und pathologische Veränderungen nur durch weiterführende diagnostische Verfahren erhalten werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part I. Description of system. Br J Radiol 46: 1016– 1022

    PubMed  CAS  Google Scholar 

  2. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1995) A positron emission transaxial tomograph for nuclear imaging (PETT). Radiology 114: 89–98

    Google Scholar 

  3. Herholz K, Herscovitch P, Heiss WD (2004) NeuroPET: positron emission tomography (PET) in neuroscience and clinical neurology. Springer, Berlin

    Google Scholar 

  4. Maziere B, Halldin C (2004) PET transfer for brain scannings. In: Ell PJ, Gambhir SS (Hrsg) Nuclear medicine in clinical diagnosis and treatment. Elsevier, S 1295–1329

    Google Scholar 

  5. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137

    PubMed  CAS  Google Scholar 

  6. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897– 916

    PubMed  CAS  Google Scholar 

  7. Phelps ME, Kuhl DE, Mazziotta JC (1981) Metabolic mapping of brain’s response to visual stimulation: studies in humans. Science 211: 1445–1448

    PubMed  CAS  Google Scholar 

  8. Silverman DHS, Melega WP (2004) Molecular imaging of biological processes with PET: Evaluating biologic bases of cerebral function. In: Phelps ME (Hrsg) PET: molecular imaging and its biological applications. Springer, S 509–583

    Google Scholar 

  9. Kleihues P, Burger PC, Scheithauer B (1993) Histological typing of tumors of the central nervous system. Springer, Berlin

    Google Scholar 

  10. Paulus W, Peiffer J (1989) Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 64: 442–447

    PubMed  CAS  Google Scholar 

  11. Warbug O (1956) On the origin of cancer cells. Science 123: 309– 314

    Google Scholar 

  12. Tyler JL, Diksic M, Villemure JG, Evans AC, Meyer E, Yamamoto YL, Feindel W (1987) Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 28: 1123–1133

    PubMed  CAS  Google Scholar 

  13. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62: 1074–1078

    PubMed  CAS  Google Scholar 

  14. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329

    PubMed  Google Scholar 

  15. Patronas NJ, Dichiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62: 816– 822

    PubMed  CAS  Google Scholar 

  16. Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79: 115–126

    PubMed  CAS  Google Scholar 

  17. Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, Kessler RM (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195: 47–52

    PubMed  CAS  Google Scholar 

  18. Holthoff VA, Herholz K, Berthold F, Widemann B, Schröder R, Neubauer I, Heiss WD (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72:1394–1403

    PubMed  CAS  Google Scholar 

  19. Okada J, Yoshikawa K, Imazeki K, Minoshima S, Uno K, Itami J, Kuyama J, Maruno H, Arimizu N (1991) The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med 32: 686–691

    PubMed  CAS  Google Scholar 

  20. Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ (1987) Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 164: 521–526

    PubMed  Google Scholar 

  21. De Souza B, Brunetti A, Fulham MJ, Brooks RA, De Michele D, Cook P, Nieman L, Doppman JL, Oldfield EH, Di Chiro G (1990) Pituitary microadenomas: a PET study. Radiology 177: 39–44

    PubMed  Google Scholar 

  22. Roelcke U, Radu EW, Hausmann O, Vontobel P, Maguire RP, Leenders KL (1998) Tracer transport and metabolism in a patient with juvenile pilocytic astrocytoma. a PET study. J Neurooncol 36: 279–283

    PubMed  CAS  Google Scholar 

  23. Hölzer T, Herholz K, Jeske J, Heiss WD (1993) FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 17: 681–687

    PubMed  Google Scholar 

  24. Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, Mineura K, Uemura K (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. Am J Neuroradiol 17: 345–353

    PubMed  CAS  Google Scholar 

  25. Bustany P, Chatel M, Derlon JM, Darcel F, Sgouropoulos P, Soussaline F, Syrota A (1986) Brain tumor protein synthesis and histological grades: a study by positron emission tomography (PET) with C11-L-Methionine. J Neurooncol 3: 397–404

    PubMed  CAS  Google Scholar 

  26. Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Löttgen J, Thiel A, Wienhard K, Heiss WD (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50: 1316–1322

    PubMed  CAS  Google Scholar 

  27. De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, Salmon I, Brotchi J, Goldman S (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95: 746–750

    PubMed  Google Scholar 

  28. Kracht L, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, Heiss WD (2003) Methyl-(11C)-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30: 868–873

    PubMed  CAS  Google Scholar 

  29. Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, Shimosegawa E, Ito H, Hatazawa J, Okudera T, Uemura K, Yasui N (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186: 45–53

    PubMed  CAS  Google Scholar 

  30. Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C, Courtheoux P, Houtteville JP (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-Lmethylmethionine. Neurosurgery 40: 276–287

    PubMed  CAS  Google Scholar 

  31. Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, Bolander H, Bergstrom M, Smits A (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92: 1541–1549

    PubMed  CAS  Google Scholar 

  32. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nature Medicine 4: 1334–1336

    PubMed  CAS  Google Scholar 

  33. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, Galldiks N, Klein JC, Sobesky J, Hilker R, Vollmar S, Herholz K, Wienhard K, Heiss WD (2005) 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46: 1948–1958

    PubMed  CAS  Google Scholar 

  34. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya R (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol 3: 193–200

    PubMed  CAS  Google Scholar 

  35. Levivier M, Goldman S, Pirotte B, Brucher JM, Baleriaux D, Luxen A, Hildebrand J, Brotchi J (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [ 18F] fluorodeoxyglucose. J Neurosurg 82: 445–452

    PubMed  CAS  Google Scholar 

  36. Shapiro WR (1992) Low-grade gliomas: when to treat? Ann Neurol 31: 437–438

    PubMed  CAS  Google Scholar 

  37. Di Chiro G (1987) Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22: 360–371

    PubMed  Google Scholar 

  38. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery--in malignant glioma. Ann Nucl Med 18: 291– 296

    PubMed  CAS  Google Scholar 

  39. Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P, Bormans G, Mortelmans L (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32: 39–51

    PubMed  CAS  Google Scholar 

  40. Tralins KS, Douglas JG, Stelzer KJ, Mankoff DA, Silbergeld DL, Rostomily RC, Hummel S, Scharnhorst J, Krohn KA, Spence AM (2002) Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med 43: 1667–1673

    PubMed  Google Scholar 

  41. Yamamoto T, Nishizawa S, Maruyama I, Yoshida M, Tsuchida T, Waki A, Fujibayashi Y, Kubota T, Yonekura Y, Itoh H (2001) Acute effects of stereotactic radiosurgery on the kinetics of glucose metabolism in metastatic brain tumors: FDG PET study. Ann Nucl Med 15: 103–109

    PubMed  CAS  Google Scholar 

  42. Reinhardt MJ, Kubota K, Yamada S, Iwata R, Yaegashi H (1997) Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, L-methionine and thymidine. J Nucl Med 38: 280–287

    PubMed  CAS  Google Scholar 

  43. Würker M, Herholz K, Voges J, Pietrzyk U, Treuer H, Bauer B, Sturm V, Heiss WD (1996) Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 23: 583–586

    PubMed  Google Scholar 

  44. Tang BN, Sadeghi N, Branle F, De Witte O, Wikler D, Goldman S (2005) Semi-quantification of methionine uptake and flair signal for the evaluation of chemotherapy in low-grade oligodendroglioma. J Neurooncol 71: 161–168

    PubMed  CAS  Google Scholar 

  45. Galldiks N, Kracht L, Burghaus L, Thomas A, Jacobs AH, Heiss WD, Herholz K (2006) Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33: 516–524

    PubMed  CAS  Google Scholar 

  46. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358: 727–729

    PubMed  CAS  Google Scholar 

  47. Herholz K, Reulen HJ, von Stockhausen HM, Thiel A, Ilmberger J, Kessler J, Eisner W, Yousry TA, Heiss WD (1997) Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 41: 1253–1260

    PubMed  CAS  Google Scholar 

  48. Krings T, Schreckenberger M, Rohde V, Foltys H, Spetzger U, Sabri O, Reinges MH, Kemeny S, Meyer PT, Moller-Hartmann W, Korinth M, Gilsbach JM, Buell U, Thron A (2001) Metabolic and electrophysiological validation of functional MRI. J Neurol Neurosurg Psychiatry 71: 762–771

    PubMed  CAS  Google Scholar 

  49. Steinmetz H, Huang YX, Seitz RJ, Knorr U, Schlaug G, Herzog H, Hacklander T, Freund HJ (1992) Individual integration of positron emission tomography and high-resolution magnetic resonance imaging. J Cereb Blood Flow Metab 12: 919–926

    PubMed  CAS  Google Scholar 

  50. Pietrzyk U, Herholz K, Heiss WD (1990) Three-dimensional alignment of functional and morphological tomograms. J Comput Assist Tomogr 14: 51–59

    PubMed  CAS  Google Scholar 

  51. Wunderlich G, Knorr U, Herzog H, Kiwit JC, Freund HJ, Seitz RJ (1998) Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery 42:18–26; discussion 26–17

    Google Scholar 

  52. Nariai T, Senda M, Ishii K, Maehara T, Wakabayashi S, Toyama H, Ishiwata K, Hirakawa K. Three-dimensional imaging of cortical structure, function and glioma for tumor resection. J Nucl Med 1997;38: 1563–1568

    PubMed  CAS  Google Scholar 

  53. Thiel A, Habedank B, Winhuisen L, Herholz K, Kessler J, Haupt WF, Heiss WD (2005) Essential language function of the right hemisphere in brain tumor patients. Ann Neurol 57: 128–131

    PubMed  Google Scholar 

  54. Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J (2005) Cost of disorders of the brain in Europe. Eur J Neurol 12 (Suppl 1): 1–27

    PubMed  Google Scholar 

  55. Petersen RC, Doody R, Kurz A, Mohs RC, Morris J. C, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58: 1985–1992

    PubMed  CAS  Google Scholar 

  56. Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1983) The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 40: 711–714

    PubMed  CAS  Google Scholar 

  57. De Leon MJ, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 391– 394

    PubMed  Google Scholar 

  58. Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO (2003) A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol Scand 179 (Suppl): 52–76

    Google Scholar 

  59. Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J (2001) Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A 98: 3334–3339

    PubMed  CAS  Google Scholar 

  60. Chase TN, Foster NL, Fedio P, Brooks R, Mansi L, Di Chiro G (1984) Regional cortical dysfunction in Alzheimer’s disease as determined by positron emission tomography. Ann Neurol 15 (Suppl): S170–S174

    PubMed  Google Scholar 

  61. Haxby JV, Grady CL, Koss E, Horwitz B, Schapiro M, Friedland RP, Rapoport SI (1988) Heterogeneous anterior-posterior metabolic patterns in dementia of the Alzheimer type. Neurology 38: 1853– 1863

    PubMed  CAS  Google Scholar 

  62. Zuendorf G, Kerrouche N, Herholz K, Baron JC (2003) Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Hum Brain Mapp 18: 13–21

    PubMed  Google Scholar 

  63. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42: 85–94

    PubMed  CAS  Google Scholar 

  64. Jagust WJ, Friedland RP, Budinger TF, Koss E, Ober B (1998) Longitudinal studies of regional cerebral metabolism in Alzheimer’s disease. Neurology 38: 909–912

    Google Scholar 

  65. Herholz K, Perani D, Salmon E, Franck G, Fazio F, Heiss WD, Comar D (1993) Comparability of FDG PET studies in probable Alzheimer’s disease. J Nucl Med 34: 1460–1466

    PubMed  CAS  Google Scholar 

  66. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, Dekosky ST (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56: 1133–1142

    PubMed  CAS  Google Scholar 

  67. Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, Halber M, Jelic V, Almkvist O, Collette F, Alberoni M, Kennedy A, Hasselbalch S, Fazio F, Heiss WD (1990) Impairment of neocortical metabolism predicts progression in Alzheimer’s disease. Dement Geriatr Cogn Disord 10: 494–504

    Google Scholar 

  68. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30: 1104–1113

    PubMed  Google Scholar 

  69. Herholz K, Weisenbach S, Zündorf G, Lenz O, Schröder H, Bauer B, Kalbe E, Heiss WD (2004) In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 21: 136–143

    PubMed  CAS  Google Scholar 

  70. Herholz K, Weisenbach S, Kalbe E, Diederich NJ, Heiss WD (2005) Cerebral acetylcholine esterase activity in mild cognitive impairment. Neuroreport 16: 1431–1434

    PubMed  CAS  Google Scholar 

  71. Eggers C, Szelies B, Bauer B, Wienhard K, Schröder H, Herholz K, Heiss WD (2007) Imaging of acetylcholine esterase activity in brainstem nuclei involved in regulation of sleep and wakefulness. Eur J Neurol 14: 690–693

    PubMed  CAS  Google Scholar 

  72. Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35 (Suppl 1): S30–45

    PubMed  CAS  Google Scholar 

  73. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price J. C, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann.Neurol 55: 306–319

    PubMed  CAS  Google Scholar 

  74. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, Cowie TF, Dickinson KL, Maruff P, Darby D, Smith C, Woodward M, Merory J, Tochon-Danguy H, O’Keefe G, Klunk WE, Mathis CA, Price JC, Masters CL, Villemagne VL (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68: 1718–1725

    PubMed  CAS  Google Scholar 

  75. Small GW, Bookheimer SY, Thompson PM, Cole GM, Huang SC, Kepe V, Barrio JR (2008) Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurol 7: 161–172

    PubMed  Google Scholar 

  76. Sachdev PS, Brodaty H, Looi JC (1999) Vascular dementia: diagnosis, management and possible prevention. Med J Aust 170: 81–85

    PubMed  CAS  Google Scholar 

  77. Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1992) Severity of vascular dementia is related to volume of metabolically impaired tissue. Arch Neurol 49: 909–913

    PubMed  CAS  Google Scholar 

  78. Sultzer DL, Mahler ME, Cummings JL, Van Gorp WG, Hinkin CH, Brown C (1995) Cortical abnormalities associated with subcortical lesions in vascular dementia. Clinical and positron emission tomographic findings. Arch Neurol 52: 773–780

    PubMed  CAS  Google Scholar 

  79. Hu XS, Okamura N, Arai H, Higuchi M, Matsui T, Tashiro M, Shinkawa M, Itoh M, Ido T, Sasaki H (2000) 18F-fluorodopa PET study of striatal dopamine uptake in the diagnosis of dementia with Lewy bodies. Neurology 55: 1575–1577

    PubMed  CAS  Google Scholar 

  80. Kamo H, McGeer PL, Harrop R, McGeer EG, Calne DB, Martin WRW, Pate BD (1987) Positron emission tomography and histopathology in Pick’s disease. Neurology 37: 439–445

    PubMed  CAS  Google Scholar 

  81. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305: 137–138

    PubMed  CAS  Google Scholar 

  82. Sawle GV, Playford ED, Burn DJ, Cunningham VJ, Brooks DJ (1994) Separating Parkinson’s disease from normality. Discriminant function analysis of fluorodopa F 18 positron emission tomography data. Arch Neurol 51: 237–243

    PubMed  CAS  Google Scholar 

  83. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(8): 1437–1448

    PubMed  Google Scholar 

  84. Holthoff-Detto VA, Kessler J, Herholz K, Bönner H, Pietrzyk U, Würker M, Ghaemi M, Wienhard K, Wagner R, Heiss WD (1997) Functional effects of striatal dysfunction in Parkinson disease. Arch Neurol 54: 145–150

    PubMed  CAS  Google Scholar 

  85. Brooks DJ, Playford ED, Ibanez V, Sawle GV, Thompson PD, Findle LJ, Marsden CD (1992) Isolated tremor and disruption of the nigrostriatal dopaminergic system: an 18F-dopa PET study. Neurology 42: 1554–1560

    PubMed  CAS  Google Scholar 

  86. Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64: 314–319

    PubMed  CAS  Google Scholar 

  87. Hilker R, Schweitzer K, Coburger S, Ghaemi M, Weisenbach S, Jacobs AH, Rudolf J, Herholz K, Heiss WD (2005) Nonlinear pro gression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 62: 378–382

    PubMed  Google Scholar 

  88. Antonini A, Vontobel P, Psylla M, Günther I, Maguire PR, Missimer J, Leenders KL (1995) Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 52: 1183–1190

    PubMed  CAS  Google Scholar 

  89. Hilker R, Klein C, Ghaemi M, Kis B, Strotmann T, Ozelius LJ, Lenz O, Vieregge P, Herholz K, Heiss WD, Pramstaller PP (2001) Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 49: 367–376

    PubMed  CAS  Google Scholar 

  90. Brooks DJ (1993) PET studies on the early and differential diagnosis of Parkinson’s disease. Neurology 43 (Suppl 6): S6–S16

    PubMed  CAS  Google Scholar 

  91. Perani D, Bressi S, Testa D, Grassi F, Cortelli P, Gentrini S, Savoiardo M, Caraceni T, Fazio F (1995) Clinical metabolic correlations in multiple system atrophy - a fludeoxyglucose F-18 positron emission tomographic study. Arch Neurol 52: 179–185

    PubMed  CAS  Google Scholar 

  92. Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G (1999) Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. Neuroimage 10: 149–162

    PubMed  CAS  Google Scholar 

  93. Cordes M, Snow BJ, Morrison S, Sossi V, Ruth TJ, Calne DB (1993) Parametric imaging of the rate constant Ki using [18Fluoro]-Ldopa positron emission tomography in progressive supranuclear palsy. Neuroradiology 35: 404–409

    PubMed  CAS  Google Scholar 

  94. Laureys S, Salmon E, Garraux G, Peigneux P, Lemaire C, Degueldre C, Franck G (1999) Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 246: 1151–1158

    PubMed  CAS  Google Scholar 

  95. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12: 425–434

    PubMed  CAS  Google Scholar 

  96. Young AB, Penney JB, Starosta-Rubinstein S, Markel D, Berent S, Rothley J, Betley A, Hichwa R (1987) Normal caudate glucose metabolism in persons at risk for Huntington’s disease. Arch Neurol 44: 254–257

    PubMed  CAS  Google Scholar 

  97. Antonini A, Leenders KL, Eidelberg D (1998) [11C]raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann Neurol 43: 253–255

    PubMed  CAS  Google Scholar 

  98. Heiss WD (1992) Experimental evidence of ischemic thresholds and functional recovery. Stroke 23: 1668–1672

    PubMed  CAS  Google Scholar 

  99. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36: 557–565

    PubMed  CAS  Google Scholar 

  100. Lyden PD, Grotta JC, Levine SR, Marler JR, Frankel MR, Brott TG (1997) Intravenous thrombolysis for acute stroke. Neurology 49: 14–20

    PubMed  CAS  Google Scholar 

  101. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P (1981) Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 20: 273– 284

    PubMed  CAS  Google Scholar 

  102. Ackerman RH, Correia JA, Alpert NM, Baron JC, Gouliamos A, Grotta JC, Brownell GL, Taveras JM (1981) Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Initial results of clinicophysiologic correlations. Arch Neurol 38: 537–543

    PubMed  CAS  Google Scholar 

  103. Lenzi GL, Frackowiak RSJ, Jones T (1982) Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab 2: 321–335

    PubMed  CAS  Google Scholar 

  104. Powers WJ, Grubb RL Jr, Darriet D, Raichle ME (1985) Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 5: 600–608

    PubMed  CAS  Google Scholar 

  105. Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, Wienhard K (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 12: 193–203

    PubMed  CAS  Google Scholar 

  106. Furlan M, Marchal G, Viader F, Derlon JM, Baron JC (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40: 216–226

    PubMed  CAS  Google Scholar 

  107. Hakim AM, Evans AC, Berger L, Kuwabara H, Worsley K, Marchal G, Beil C, Pokrupa R, Diksic M, Meyer E (1989) The effect of nimodipine on the evolution of human cerebral infarction studied by PET. J Cereb Blood Flow Metab 9: 523–534

    PubMed  CAS  Google Scholar 

  108. Marchal G, Young AR, Baron JC (1999) Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J Cereb Blood Flow Metab 19: 467–482

    PubMed  CAS  Google Scholar 

  109. Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G (2001) Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain 124: 20–29

    PubMed  CAS  Google Scholar 

  110. Dohmen C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, Neveling M, Brinker G, Heiss WD (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34: 2152–2158

    PubMed  Google Scholar 

  111. Read SJ, Hirano T, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Chan JG, Egan GF, Scott AM, Bladin CF, McKay WJ, Donnan GA (1998) Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology 51: 1617– 1621

    PubMed  CAS  Google Scholar 

  112. Kidwell CS, Alger JR, Saver JL (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34: 2729–2735

    PubMed  Google Scholar 

  113. Heiss WD, Sobesky J (2008) Comparison of PET and DW/PW-MRI in acute ischemic stroke. Keio J Med 57: 125–131

    PubMed  Google Scholar 

  114. Mishra NK, Albers GW, Davis SM, Donnan GA, Furlan AJ, Hacke W, Lees KR (2010) Mismatch-based delayed thrombolysis: a meta-analysis. Stroke 41: e25–33

    PubMed  Google Scholar 

  115. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J (1980) Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8: 47–60

    PubMed  CAS  Google Scholar 

  116. Wise RJS, Rhodes CG, Gibbs JM, Hatazawa J, Palmer T, Frackowiak RSJ, Jones T (1983) Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann Neurol 14: 627–637

    PubMed  CAS  Google Scholar 

  117. Feeney DM, Baron JC (1986) Diaschisis. Stroke 17: 817–830

    PubMed  CAS  Google Scholar 

  118. Szelies B, Herholz K, Pawlik G, Karbe H, Hebold I, Heiss WD (1991) Widespread functional effects of discrete thalamic infarction. Arch Neurol 48: 178–182

    PubMed  CAS  Google Scholar 

  119. Gibbs JM, Wise RJ, Leenders KL, Jones T (1984) Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1: 310–314

    PubMed  CAS  Google Scholar 

  120. Cramer SC (2008) Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 63: 272– 287

    PubMed  Google Scholar 

  121. Weiller C (1995) Recovery from motor stroke: human positron emission tomography studies. Cerebrovasc Dis 5: 282–291

    Google Scholar 

  122. Ward NS (2007) Future perspectives in functional neuroimaging in stroke recovery. Eura Medicophys 43: 285–294

    PubMed  CAS  Google Scholar 

  123. Heiss WD (2009) WSO Leadership in Stroke Medicine Award Lecture Vienna, September 26, 2008: functional imaging correlates to disturbance and recovery of language function. Int J Stroke 4: 129–136

    PubMed  Google Scholar 

  124. ILAE (2000) Commission on Diagnostic Strategies: recommendations for functional neuroimaging of persons with epilepsy. Epilepsia 41: 1350–1356

    Google Scholar 

  125. Kuhl DE, Engel J, Phelps ME, Selin C (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8: 348–360

    PubMed  CAS  Google Scholar 

  126. Engel J Jr, Kuhl DE, Phelps ME (1982) Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 218: 64–66

    PubMed  Google Scholar 

  127. Henry TR (1996) Functional neuroimaging with positron emission tomography. Epilepsia 37: 1141–1154

    PubMed  CAS  Google Scholar 

  128. O’Brien TJ, Hicks RJ, Ware R, Binns DS, Murphy M, Cook MJ (2001) The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal--based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 42: 1158–1165

    PubMed  Google Scholar 

  129. Stefan H, Schneider S, Abraham-Fuchs K, Pawlik G, Feistel H, Bauer J, Neubauer U, Huk WJ, Holthoff V (1991) The neocortico to mesio-basal limbic propagation of focal epileptic activity during the spike-wave complex. Electroencephalogr Clin Neurophysiol 79: 1–10

    PubMed  CAS  Google Scholar 

  130. Debets RMC, Sadzot B, Van Isselt JW, Brekelmans GJF, Meiners LC, Van Huffelen AC, Franck G, Van Veelen CWM (1997) Is 11C-flumazenil PET superior to 18FDG PET and 123I-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy? J Neurol Neurosurg Psychiatry 62: 141–150

    PubMed  CAS  Google Scholar 

  131. Szelies B, Weber-Luxenburger G, Mielke R, Pawlik G, Kessler J, Pietrzyk U, Bauer B, Heiss WD (2000) Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry. Eur J Neurol 7: 393–400

    PubMed  CAS  Google Scholar 

  132. Juhasz C, Chugani DC, Muzik O, Shah A, Shah J, Watson C, Canady A, Chugani HT (2001) Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 56: 1650–1658

    PubMed  CAS  Google Scholar 

  133. Choi JY, Kim SJ, Hong SB, Seo DW, Hong SC, Kim BT, Kim SE (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30: 581–587

    PubMed  Google Scholar 

  134. Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS (2003) Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 126: 1300–1318

    PubMed  Google Scholar 

  135. Umile EM, Sandel ME, Alavi A, Terry CM, Plotkin RC (2002) Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Arch Phys Med Rehabil 83: 1506–1513

    PubMed  Google Scholar 

  136. Steiner LA, Coles JP, Czosnyka M, Minhas PS, Fryer TD, Aigbirhio FI, Clark JC, Smielewski P, Chatfield DA, Donovan T, Pickard JD, Menon DK (2003) Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury. J Neurol Neurosurg Psychiatry 74: 765–770

    PubMed  CAS  Google Scholar 

  137. De Volder AG, Michel C, Guerit JM, Bol A, Georges B, de Barsy T, Laterre C (1994) Brain glucose metabolism in postanoxic syndrome due to cardiac arrest. Acta Neurologica Belgica 94: 183– 189

    PubMed  Google Scholar 

  138. Rudolf J, Sobesky J, Grond M, Heiss WD (2000) Identification by positron emission tomography of neuronal loss in acute vegetative state [letter]. Lancet 355: 115–116

    PubMed  CAS  Google Scholar 

  139. Owen AM, Menon DK, Johnsrude IS, Bor D, Scott SK, Manly T, Williams EJ, Mummery C, Pickard JD (2002) Detecting residual cognitive function in persistent vegetative state. Neurocase 8: 394–403

    PubMed  Google Scholar 

  140. Andersson JLR, Muhr C, Lilja A, Valind S, Lundberg PO, Langström B (1997) Regional cerebral blood flow and oxygen metabolism during migraine with and without aura. Cephalalgia 17: 570–579

    PubMed  CAS  Google Scholar 

  141. Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244: 39–47

    PubMed  Google Scholar 

  142. Hammoud DA, Hoffman JM, Pomper MG (2007) Molecular neuroimaging: from conventional to emerging techniques. Radiology 245: 21–42

    PubMed  Google Scholar 

  143. Semmler W, Schwaiger M (2008) Molecular imaging II (handbook of experimental pharmacology). Springer, Berlin

    Google Scholar 

  144. Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons) – advances in PET imaging technology. J Nucl Med 47: 1735–1745

    PubMed  CAS  Google Scholar 

  145. Heiss WD (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36 (Suppl 1): 105–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, WD., Kracht, L. (2011). Neurologie. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17805-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17805-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17804-7

  • Online ISBN: 978-3-642-17805-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics